
IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 1

Optimizing the Performance of Virtual
Machine Synchronization for Fault Tolerance
Jun Zhu,Zhefu Jiang,Zhen Xiao, Senior Member, IEEE, and Xiaoming Li, Senior Member, IEEE

Abstract—Hypervisor-based fault tolerance (HBFT), which synchronizes the state between the primary VM and the backup VM
at a high frequency of tens to hundreds of milliseconds, is an emerging approach to sustaining mission-critical applications.
Based on virtualization technology, HBFT provides an economic and transparent fault tolerant solution. However, the advantages
currently come at the cost of substantial performance overhead during failure-free, especially for memory intensive applications.
This paper presents an in-depth examination of HBFT and options to improve its performance. Based on the behavior of
memory accesses among checkpointing epochs, we introduce two optimizations, read fault reduction and write fault prediction,
for the memory tracking mechanism. These two optimizations improve the performance by 31% and 21%, respectively, for some
applications. Then, we present software superpage which efficiently maps large memory regions between virtual machines (VM).
Our optimization improves the performance of HBFT by a factor of 1.4 to 2.2 and achieves about 60% of that of the native VM.

Index Terms—Virtualization, Hypervisor, Checkpoint, Recovery, Fault Tolerance.

F

1 INTRODUCTION

R ELIABLE service plays an important role in
mission-critical applications, such as banking sys-

tems, stock exchange systems and air traffic control
systems, which cannot tolerate even a few minutes’
downtime. Although service providers have taken
great efforts to maintain their services, various fail-
ures, such as hardware failures [2], maintenance fail-
ures [3] and power outage [4], still occur in data
centers. Currently, when a failure happens, it will take
up to hours or days to resolve the problem, which will
incur huge economic losses for some key applications.

Obviously, reliable data centers need an effective
and efficient failure recovery mechanism to pre-
vent catastrophe. Hypervisor-based fault tolerance
(HBFT) [5][6][7], employing the checkpoint-recovery
protocol [8], is an emerging approach to sustain-
ing mission-critical applications. HBFT works in the
primary-backup mode. It capitalizes on the ability of
the hypervisor or virtual machine monitor (VMM) [9]
to replicate the snapshot of the primary VM from one
host (primary host) to another (backup host) every tens
to hundreds of milliseconds. During each epoch (the
time between checkpoints), hypervisor records the
newly dirtied memory pages of the primary VM run-
ning on the primary host. At the end of each epoch,
the incremental checkpoint [10] (i.e., the newly dirtied
pages, CPU state and device state.) is transferred to

• Jun Zhu, Zhefu Jiang, and Zhen Xiao is with the School of Electronics
Engineering & Computer Science, Peking University, China, 100871.
E-mail: {zhujun, jzf, xiaozhen}@net.pku.edu.cn

• Xiaoming Li is with State Key Laboratory of Software Development
Environment, MOST, China, 100871.
E-mail: lxm@pku.edu.cn

• Contact Author: Zhen Xiao.
This paper is an extended version of our IPDPS ’10 paper [1].

update the state of the backup VM which resides in the
backup host. When the primary VM fails, its backup
VM will take over the service, continuing execution
from the latest checkpoint.

HBFT has two main advantages in providing fault
tolerant services. First, HBFT employs virtualiza-
tion technology and runs on commodity hardware
and operating systems. It is much cheaper than the
commercial fault tolerant servers (e.g., HP NonStop
Server [11]) that use specialized hardware and cus-
tomized software to run in fully synchronous mode.
Second, HBFT works in the hypervisor layer and can
provide fault tolerance for legacy applications and
operating systems running on top of it.

However, the overhead of current HBFT systems is
quite high during failure-free, especially for memory-
intensive workloads. Lu and Chiueh reported that
the performance of some realistic data center work-
loads experienced a 200% degradation [12]. Even with
asynchronous state transfer optimization, Remus still
leads to a 103% slow down compared to the native
VM performance for some benchmark [5]. Kemari
reported a similar performance penalty [6]. The goal
of this work is to improve the performance of the
primary VM during failure-free.

The performance overhead of HBFT comes from
several sources. Output commit problem [10], e.g.,
a disk write operation or a network transmit op-
eration, is a well-known source of the overhead.
How to reduce this overhead is an active area of re-
search [10][13][14]. In this paper, we address a differ-
ent source of the overhead: that due to memory state
synchronization between the primary and the backup
machines. In a typical HBFT system, the hypervisor
needs to track dirtied memory pages of the primary

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 2

VM in each epoch 1. The memory tracking mechanism
of the shadow page table (SPT) incurs a large number
of page faults [16][17], conflicting the goal of [17]:
“Reducing the frequency of exits is the most important
optimization for classical VMMs”. In addition, at the
end of each epoch, all the dirtied pages have to be
mapped and copied to the driver domain (Domain0)
before being transferred to the backup host, which
further causes serious performance degradation.

Contributions. In this paper, we present an in-
depth examination of HBFT and optimizations to
improve its performance. The following is a summary
of our contributions.

First, we find that shadow page table entries
(shadow entry for short) exhibit fine reuse at the
granularity of checkpoint epochs, and that shadow
entry write accesses exhibit fine spatial locality with
a history-similar pattern. These observations provide
the insight in building an efficient HBFT.

Second, we introduce two optimizations, read fault
reduction and write fault prediction, for the memory
tracking mechanism. They improve the performance
by 31% and 21%, respectively, for some workloads.

Finally, inspired by the advantages of superpage
in operating systems, we present software superpage
to map large memory regions between VMs. The
approach accelerates the process of state replication
at the end of each epoch significantly.

With the above optimizations, the primary VM
achieves a performance about 60% of that of the native
VM.

The remainder of this paper is organized as follows.
The next section presents an overview of the system
architecture and some related techniques. Section 3
analyzes the behavior of shadow entry accesses across
checkpoint epochs. The details of our optimizations
are presented in Section 4 and evaluated in Section
5. Section 6 describes the related work and section 7
concludes.

2 BACKGROUND

Logging and checkpointing are two techniques in
providing fault tolerant solutions (see the excellent
survey by Elnozahy et al. [13]). HBFT implements
fault tolerance in the hypervisor and protects the
whole VM that encapsulates the guest OS and the ap-
plications. It can be classified into two categories: log-
based systems such as VMware FT [18] and Marathon
everRun level 3 [19], and checkpoint-based systems
such as Remus [5], Kemari [6] and our Taiji system [7].
Systems in the former category suffer from two short-
comings. First, they depend heavily on the the target
ISA (instruction set architecture): each architecture
needs a specific implementation in the hypervisor.

1. Memory tracking mechanism can also be implemented on
nested page table [15]. Unless stated otherwise, we improve the
HBFT implemented on SPT.

running paused running

State Transfer

Ack

A B C

D E

F

Primary VM

Backup VM

State Transfer

Ack

Fig. 2. General execution process of HBFT.

Second, they incur a high overhead in multiprocessor
environment due to shared memory access [20]. For
this reason, current commercial log-based systems can
work only in single processor environment.

In this paper, we focus on checkpoint-based
HBFT [5][6][7] which has attracted much interest re-
cently. In such a system, the state of the backup VM
is frequently synchronized with that of the primary
VM. When the primary VM fails, the backup VM
takes over seamlessly. Before the release of Remus, we
developed a similar prototype Taiji [7] on Xen [21].
Unlike Remus which uses separate local disks for
the primary VM and the backup VM, our system
is deployed with Network Attached Storage (NAS).
This alleviates the need to synchronize modified disk
contents. Since it accesses the shared storage at the
block level, file system state is maintained in case
of fail over. Should shared storage become a single
point of failure, RAID (Redundant Array of Inexpen-
sive Disks) [22] or commercial NAS solutions (e.g.,
Synology Disk Station [23]) can be employed. In this
section, we first introduce the architecture of Taiji and
then its memory tracking mechanism.

2.1 Taiji Prototype

The architecture of Taiji is shown in Fig 1. The primary
VM and the backup VM reside in separate physical
hosts. Each host runs a hypervisor (i.e., Xen). Initially,
the two VMs are synchronized by copying the state
(i.e., all memory pages, CPU state and device state)
of the primary VM to the backup VM. Then, the
primary VM runs in repeated epoches by suspend-
ing/resuming its VCPUs. In each epoch, the primary
hypervisor captures the incremental checkpoint (i.e.,
changed memory pages, CPU state and device state)
of the primary VM and sends it to the backup host
through Domain0. The output of the primary VM
generated in each epoch is blocked in Domain0 until
the acknowledgement of the checkpoint is received
from the backup host. The hypervisor on the backup
host (backup hypervisor) updates the state of the
backup VM accordingly.

As a checkpoint-recovery protocol, consistent state
between the primary VM and the backup VM is a
prerequisite. Taiji implements checkpointing by re-
peated executions of the final phrase of the VM live
migration [24][25] at a high frequency of tens of
milliseconds. Fig 2 illustrates the general execution

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 3

Primary Host Backup Host

Hypervisor Hypervisor

Primary VM

Backup
VM

Domain0 Domain0

DomainUDomainU

Checkpoint

Output

Apps

Guest OS

Fig. 1. The architecture of Taiji. The execution of the primary VM is divided into epochs. In each epoch, Domain0
obtains an incremental checkpoint of the primary VM, sends it to the backup host, and handles the output commit
problem.

process of checkpoint-based HBFT. This execution
process is suitable for all checkpoint-based HBFT, not
specific to Taiji.

At the beginning of each epoch (A), the primary
hypervisor initializes memory tracking mechanism
for the primary VM. During each epoch (between A
and B), the modified pages are tracked. At the same
time, output state, e.g., transmitted network packets
and data written to disk, is blocked and buffered in
the backend of Domain0 [21]. At the end of each
epoch (B), the guest OS is paused, and dirty memory
pages are mapped and copied to Domain0. These
dirty pages, as well as CPU state and device state, are
then sent to the backup host (C) through Domain0’s
network driver, and the guest OS is resumed si-
multaneously. Upon receiving acknowledgment from
the backup host (F), Domain0 commits the buffered
output state generated in the last epoch (the epoch
between A and B).

In general, there are several substantial perfor-
mance overheads from the above mechanism. The
memory tracking mechanism (Section 2.2) relies on
hardware page protection, so the “running” guest
OS generates more page faults than normal. Dealing
with page faults is nontrivial, especially in virtualized
systems [17]. Furthermore, at the end of each epoch,
the guest OS has to be paused, waiting for Domain0
to map and copy the dirty pages into Domain0’s
address space. Mapping physical pages between VMs
is expensive [26], lengthening the “paused” state of the
guest OS.

2.2 Memory Tracking

In order to record dirty pages in each epoch, HBFT
employs a memory tracking mechanism which is
called the log dirty mode in Xen.2 The log dirty mode
is implemented on the shadow page table (SPT). Fig
3 shows the details of SPT, which is the software
mechanism of memory virtualization. The structure
of SPT is the same as the guest page table. When

2. We will use memory tracking mechanism and log dirty model
in this paper interchangeably.

Hypervisor: SPT

Guest OS: GPT Hypervisor: P2M

Virtual Address Physical
Address

Machine Address

Virtual Address Machine Address

Fig. 3. The structure of shadow page table (SPT).

running in a VM, the guest OS maintains guest page
tables (GPT) that translate virtual addresses into physical
addresses of the VM. The real page tables, exposed
to the hardware MMU, are SPTs maintained by the
hypervisor. SPTs directly translate virtual addresses
into hardware machine addresses. Each shadow entry
is created on demand according to the guest page
table entry (guest entry for short) and physical-to-
machine table (P2M). The log dirty model relies on the
hardware page protection of the SPT to track memory
write operations by the guest OS.

The log dirty mode was first designed for VM
live migration to track dirty memory pages. VM live
migration employs an iterative copy mechanism to
ease performance degradation during migration. In
the first iteration, all the VM pages are transferred
to the designated host without pausing the VM. Sub-
sequent iterations copy those pages dirtied during
the previous transfer phase. These subsequent iter-
ations are called “pre-copy” rounds. In each “pre-
copy” round, the hypervisor enables the log dirty
mode of SPT to record dirty pages. The principle
of the log dirty mode is as follows. Initially, all the
shadow entries are marked as read-only, regardless of
the permission of its associated guest entries. When
the guest OS attempts to modify a memory page,
a shadow page write-fault occurs and is intercepted
by the hypervisor. If the write is permitted by its
associated guest entry, the hypervisor grants write
permission to the shadow entry and marks the page
as a dirty one accordingly. Subsequent write accesses

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 4

to this page will not incur any shadow page faults in
the current round.

In the current implementation, when tracking dirty
pages in the next round, Xen first blows down all the
shadow entries. Then, when the guest OS attempts to
access a page, a shadow page fault occurs since no
shadow entry exists. Xen intercepts this page fault,
re-constructs the shadow entry, and revokes its write
permission. By doing so, Xen makes all the shadow
entries read-only. Thus, the first write access to any
page can be intercepted, and dirtied pages can be
tracked.

Therefore, the log dirty mode results in two types
of shadow page faults. First, when the shadow entry
does not exist, both read and write access will gener-
ate a shadow page fault. Second, when an attempt is
made to modify a page through an existing shadow
entry without write permission, a shadow page write-
fault occurs.

3 BEHAVIOR OF SHADOW ENTRY ACCESS

Recall that the log dirty mode results in a consid-
erable number of shadow page faults which result
in a substantial performance degradation. To quan-
tify this, we run SPEC CINT2006 (CINT) [27], SPEC
CFP2006 (CFP) [28], SPEC Jbb2005 (SPECjbb) [29], and
SPEC Web2005 (SPECweb) [30] in the primary VM,
and examine the behavior of shadow entry accesses,
including the shadow entry reuse and the spatial
locality of write accesses.

We study shadow entry accesses at the granularity
of epochs, and a shadow entry is recorded at most
once during a single epoch, no matter how many
times it is accessed. The experiment in this section
obtains one checkpoint of the guest OS every 20msec.
Other experiment parameters, hardware configura-
tions and detailed description of benchmarks are dis-
cussed in Section 5.

3.1 Shadow Entry Reuse.

The behavior of page table entry reuse, at the gran-
ularity of instructions, has been well studied in the
literature [31]. We find that, even at the granularity
of epochs, shadow entry accesses exhibit a similar
behavior. In this paper, shadow entry reuse is defined
as: if a shadow entry is accessed in an epoch, it will
likely be accessed in future epochs.

Fig 4 demonstrates the degree of shadow entry
reuse in different workloads. Reuse is measured as
the percentage of unique shadow entries required to
account for a given percentage of page accesses. In
the workload of CFP, which reveals the best shadow
entry reuse, less than 5% of unique shadow entries
are responsible for more than 95% page accesses. Even
SPECweb, a larger workload, has a fine reuse behavior.
Although SPECjbb has less entry reuse, nearly 60%

0 10 20 30 40 50
0

10

20

30

40

50

60

70

80

90

100

Unique Shadow Entries(%)

S
ha

do
w

 E
nt

ry
 A

cc
es

se
s(

%
)

CINT
CFP
SPECjbb
SPECweb

Fig. 4. Shadow entry reuse. The reuse degree is
represented as shadow entry access coverage by a
given percentage of unique entries.

page accesses are still carried out through only 15%
unique shadow entries.

3.2 Shadow Entry Write Access.

In this subsection, we study the behavior of shadow
entry write access. The spatial locality of write ac-
cesses is the tendency of applications to modify mem-
ory near other modified addresses. During an entire
epoch, larger than 4KB (a page size) virtual memory
being modified will involve more than one shadow
entry being write accessed. To describe the spatial
locality, write access stride (stride for short) is defined
as consecutive shadow entries that have been write
accessed in the same epoch. The length of a stride is
defined as the number of shadow entries it contains.
Usually, several strides exist in an L1 SPT 3. We define
the average length of these strides as ave stride, used
to depict the degree of spatial locality of write accesses
for each SPT. Note that here ave stride is in the range
[0,512]. (512 indicates the total number of page table
entries. For a 32-bit system, the range is [0,1024]. For a
64-bit or 32-bit PAE (Physical Address Extension) [32]
system, it is [0,512].) A longer ave stride indicates bet-
ter spatial locality. The value of 512 means that all the
pages covered by the L1 SPT have been modified, and
0 indicates that no shadow entry is write accessed.

Fig 5 provides the spatial locality of shadow entry
write accesses for the workloads investigated. We di-
vide all shadow entries that have been write accessed
within an epoch into six groups according to the
length of the strides. For instance, [5,16] contains all
the shadow entries that reside in the strides of 5 to 16
entries in length. As shown in Fig 5, the workload CFP
exhibits best spatial locality of write accesses. More
than 90% shadow entries are located in the strides of
above 17 entries in length. Surprisingly, nearly 60%

3. We follow the terminologies in the Intel Manual [32] here. The
L1 page table is the last level of page table, and L2 page table is
the upper level page table which points to the L1 page table.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 5

CINT CFP SPECjbb SPECweb
0

20

40

60

80

100

Workloads

P
er

ce
nt

ag
e

of
 S

ha
do

w
 E

nt
rie

s(
%

)
[1,1] [2,2] [3,4] [5,16] [17,256] [257,512]

Fig. 5. Spatial locality of write accesses. The shadow
entries is divided into six groups based on the length
of strides where they are located.

0 20 40 60 80 100 120 140
60

65

70

75

80

85

90

95

100

Delta Stride

C
um

ul
at

iv
e

F
ra

ct
io

n
(%

)

CINT
CFP
SPECjbb
SPECweb

Fig. 6. History-similar pattern of write accesses. The
degree of history-similarity is represented as the dis-
tribution of delta strides across the whole execution of
each benchmark.

entries are located in the strides longer than half of
an SPT. Another CPU intensive workload, CINT, also
has fine spatial locality. However, SPECweb exhibits
poor spatial locality, because as a web server, it needs
to deal with a large number of concurrent requests,
each of which induces a small memory modification.

Furthermore, we find that SPT’s write accesses
present a history-similar pattern. That is, the ave stride
of a SPT tends to keep a steady value within some ex-
ecution period. In order to demonstrate this property,
we define delta stride as:

delta stride = |ave striden − ave striden+1| (1)

where ave striden indicates the ave stride of a partic-
ular SPT in the nth epoch. Delta stride is also in the
range [0,512]. A shorter delta stride indicates a more
history-similar pattern. It should be noted that we do
not use standard deviation to depict this property since
ave stride values of an SPT between two epochs far
apart may be very different.

Fig 6 provides the distribution of delta strides across
the whole execution of each benchmark. With less

spatial locality, SPECweb still exhibits an excellent
history-similar pattern. From Fig 5, we can conclude
that the value of most L1 SPT’s ave strides is one,
leading the vast majority of delta strides to be zero.
Even in the workload CFP with the lowest degree,
75% of delta stride values are still below 5 shadow
entries.

4 OPTIMIZATION DETAILS

In this section, we will present the optimization de-
tails of our HBFT implementation on Xen. We will
first give our approaches to minimize the performance
overhead resulting from the log dirty mode. Then,
we will present the software superpage mechanism to
map a large number of memory pages between virtual
machines efficiently.

4.1 Log Dirty Mode Optimization
In the previous section, we analyzed the behavior of
shadow entry accesses. Based on these observations,
we propose read-fault reduction and write-fault predic-
tion to optimize the log dirty mode of Xen.

4.1.1 Read-Fault Reduction
Log dirty mode, first developed for VM live migra-
tion, does not take into consideration the behavior of
shadow entry reuse [24], [25]. In VM live migration,
at the beginning of each pre-copy round, all the SPTs
are destroyed. This causes the first access to any guest
page to result in a shadow page fault and thus write
accesses can be identified by the hypervisor. The side
effect of this mechanism is that the first read access
to any page also induces a shadow page fault, even
though only write accesses need to be tracked. This
mechanism has little effect on VM live migration since
the whole migrating process takes only a few number
of pre-copy rounds before completion.

However, for the HBFT system which runs in re-
peated checkpointing epochs (rounds) at frequent in-
tervals during failure-free, the mechanism of the log
dirty mode induces too much performance overhead.
Through extensive experiments, we find that these
overhead comes from frequent shadow page faults in
each execution epoch because all the SPTs have been
destroyed at the beginning of each epoch. Dealing
with shadow page faults in virtualization environ-
ment incurs non-trivial performance degradation [17].
Based on the behavior of shadow entry reuse analyzed
in Section 3, we propose an alternative implementa-
tion.

Instead of destroying the SPTs at the beginning of
each epoch, we can just make them read only. This
avoids the overhead of recreating them in the next
epoch and yet is sufficient to trap write accesses in or-
der to record dirty memory regions. However, making
the SPTs read only requires checking all L1 shadow
entries one by one and revoke their write permissions.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 6

Shadow Page Table

Marker

rw = 1
rw = 1

rw = 1

rw = 1
rw = 1

rw = 1

1

1

0

0

s

c

a

n

s

c

a

n

Fig. 7. Selectively check shadow page table entries
by the marker and revoke write permissions at the
beginning of each epoch.

This scanning process can also be time-consuming. If
the number of L1 shadow entries is large and few of
them is reused in the future, this intuitive approach
may not outweigh the original one. In addition, when
entries with write permissions are in the minority, it is
also inefficient to scan all L1 shadow entries in order
to identify them. It is noteworthy that the guest OS is
paused in this scanning period. Longer scanning time
means more performance degradation on the guest
OS.

In order to revoke write permissions efficiently, we
use a bitmap marker for each SPT. Fig 7 illustrates
our mechanism. Each bit of the four-bit marker cor-
responds to one fourth of the L1 SPT and indicates
whether there are writable entries in the segment. At
the beginning of each epoch, we check the marker
to identify segments with writable entries and only
need to scan those segments to revoke their write
permission. We then clear the corresponding bitmap
in the maker to zero. During the period of execution,
when a shadow page write-fault occurs, its associated
bitmap is set according to the position of the shadow
entry. In Fig 7, there are shadow page write-faults
generated through entries in the first and the fourth
parts of the SPT, and the first bit and the fourth
bit of the marker are set accordingly. At the end
of this epoch, we only need to check the shadow
entries in the first and fourth parts. Due to the fine
spatial locality of most applications, those entries with
writable permission tend to cluster together, making
scanning process efficient. Thus, the paused period at
the end of each epoch can be kept in an acceptable
length.

Though optimized for HBFT systems, our read fault
reduction is also beneficial for live migration. We are
planning to merge these modifications into the up-
coming version of Xen. In our current implementa-
tion, we use a eight-bit marker for each SPT. How to
select the number of bits for the marker properly is
our future work.

4.1.2 Write-Fault Prediction

In order to track dirty pages, hypervisor intercepts
write accesses by revoking the write permission of
shadow entries. First access to any page results in
a shadow page write-fault. Handling page faults in-
curs a non-trivial overhead, especially for applications
with large writable working sets [24]. We consider
improving log dirty mode further by predicting which
entries will be write accessed in an epoch and grant-
ing write permission in advance.

When a shadow entry is predicted to be write ac-
cessed in the epoch, the page pointed to by this entry
is marked as dirty, and the entry is granted with write
permission, which will avoid shadow page write-fault
if the page is indeed modified later. However, pre-
diction errors will produce false “dirty” pages which
consume more bandwidth to update the backup VM.
The FDRT technique proposed in [12], which transfers
incremental checkpoint at a fine-grained dirty region
within a page, can pick out false dirty pages before
the transfer, but at the expense of computing a hash
value for each page.

Based on the behavior of shadow entry write ac-
cesses analyzed in the previous section, we develop a
prediction algorithm which is called Histase (history
stride based) and relies on the regularity of the system
execution. In the following, we will answer two ques-
tions: (1) how to predict write accesses effectively? (2)
how to rectify prediction faults efficiently?

To describe the behavior of write accesses, Histase
maintains his stride for each SPT, which is defined
as:

his stride = his stride ∗ α+ ave stride ∗ (1− α) (2)

where 0≤ α <1. his stride is initialized to the first
value of ave stride and the ave stride obtained from
the previous epoch makes his stride adapt to the new
execution pattern. The parameter α provides explicit
control over the estimation of SPT’s historical stride
behavior. At one extreme, α = 0 estimates his stride
purely based on the ave stride from the last epoch.
At the other extreme, α ≈ 1 specifies a policy that
his stride is estimated by a long history. In this paper,
we set α = 0.7 by default. Histase builds upon the bit
marker of read fault reduction. When scanning L1 SPTs
at the end of each epoch, ave stride can be calculated
at the same time with trivial CPU overhead.

When a valid shadow page write-fault occurs,
Histase makes nearby pages writable based on
his stride. Heuristically, those shadow entries within
his stride forwards and his stride/3 backwards are
made writable except those that are not allowed to
be writable. Understandably, when a page is mod-
ified, the pages forwards also tend to be modified
due to spatial locality. However, the justification for
predicting backwards is less clear. In practice, some
applications traverse large array reversely with small

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 7

probability. In addition, user stack grows towards
lower addresses in some operating systems [31]. Thus,
Histase also predicts a smaller number of backward
shadow entries.

Prediction faults are inevitable. In order to rectify
them, Histase takes advantage of an available-to-
software bit (called Predict bit in Histase) and Dirty bit
of L1 shadow entry. When a shadow entry is granted
with write permission due to prediction, Histase sets
its Predict bit and clears the Dirty bit. If the entry is
indeed write accessed in the rest of this epoch, its
Dirty bit will be set by the MMU automatically. At
the end of the epoch, Histase checks each predicted
entry and picked out those without the corresponding
Dirty bit set as fake dirty pages.

Faulty predictions result in more shadow entries
with write permissions, which will make the scanning
process at the end of the epoch more time-consuming.
Fortunately, since Histase takes effect only when a
shadow page write-fault happens, the predicted en-
tries are close to those pointing to actual dirty pages.
With the help of the marker proposed in read fault
reduction, scanning process stays efficient.

4.2 Software Superpage

In this subsection, we introduce software-superpage,
and show how it improves memory state transfer
between VMs.

The Xen hypervisor is not aware of any peripherals.
It reuses the Domain0’s drivers to manage devices,
including the network driver. At the end of each
epoch, all the dirty pages have to be mapped into
Domain0’s address space for read-only accesses before
being sent to the backup VM through the network
driver. The overhead of mapping/unmapping memory
pages between VMs is rather large. Since the primary
VM is paused in this period, this overhead results in
serious performance degradation. Evidently, reducing
the mapping/unmapping overhead can improve the
performance of the primary VM significantly.

The simplest method to eliminate the overhead is to
map the entire memory pages of the primary VM into
Domain0’s address space persistently, avoiding the
map/unmap operations at the end of each epoch. How-
ever, the virtual address space required in Domain0
must be equal to the primary VM’s memory size.
This is not a problem for the 64-bit address systems,
but the 32-bit systems with limited address space
(4G) still account for a great proportion nowadays.
In addition, many 32-bit legacy applications are still
in use. Therefore, persistent mapping is not practical
when the primary VM is configured with a large
memory.

software superpage, designed as a pseudo-persistent
mapping, reduces the map/unmap overhead to a low
level. Our design builds upon two assumptions. First,
Domain0 is non-malicious and can be granted with

L2 Page Table L1 Page Table

Normal L2 Entry

L2 Entry for Pseudo

Persistent Mapping

Pointing to

Primary VM

Pages

V
ir

tu
al

 A
d
d
re

ss
 S

p
ac

e
o
f

D
o
m

0

Fig. 8. Software superpage. L1 page tables point to
the primary VM’s entire memory pages, and limited L2
page table entries are used to point to L1 page tables.

read-only access to the primary VM’s entire physical
memory. Second, because of balloon driver [16] or
memory hotplug [33], a system’s memory pages may
be changed. We first assume that the primary VM’s
memory size keeps constant when being protected,
then at the end of this subsection, we will relax this
assumption.

Fig 8 illustrates the design details. For brevity, we
take 32-bit PAE system for example. In the initial-
ization phase of fault tolerance, Domain0 allocates
L1 page tables (PT) for pseudo-persistent mapping.
These L1 PTs point to the primary VM’s entire mem-
ory pages, from zero to the maximum size. For ex-
ample, if the primary VM’s memory size is 4G, then
2,048 L1 PTs in Domain0 are allocated, each covering
2M physical memory pages. In our design, we allocate
a smaller number of L2 PT entries (PTE) than 2,048
L2 PTEs to point to these L1 PTs. For example, 32 L2
PTEs (i.e., 64M virtual address space of Domain0). At
any time, among these 2,048 L1 PTs, at most 32 of
them are actually installed into these L2 PTEs. Those
uninstalled L1 PTs are pinned in Domain0’s memory
giving Xen an intuition that these pages are being
used as L1 PTs. When coping a dirty page, Domain0
first checks these L2 PTEs mappings. If the L1 PT that
covers the dirty page has been installed into an L2
PTE, the page can be accessed directly. Otherwise, an
L2 PTE is updated to point to the L1 PT referenced on
demand. In this way, we map/unmap memory pages
as superpage mapping (mapping 2M virtual address
space once) with a limited virtual address space.

In order to reduce the times of updating L2 PTEs,
we employ an LRU algorithm [31] to decide which L2
PTE should be updated. When an L1 PT is accessed,
its associated L2 PTE is marked as the youngest. A
demanded L1 PT is always installed into the oldest L2
PTE. This policy is based on the observation that the
set of pages that have not been modified recently are
less likely to be modified in the near future. With fine
temporal locality of memory accesses, the majority of
pages can be directly accessed with its L1 PT already
being installed.

The advantages of software superpage are two-fold.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 8

On one hand, for fault tolerance daemon, it provides
an illusion that all the memory pages of the primary
VM are mapped into Domain0’s address space persis-
tently. It eliminates almost all map/unmap overhead.
On the other hand, it does little disturbance to the
other parts residing in the same virtual address space
of Domain0 because only a small part of virtual
address space is actually used to access the entire
memory pages of the primary VM.

Outstanding Issues. In the design, we make an as-
sumption that the primary VM’s memory pages stay
constant. However, in a typical virtualization environ-
ment, page changes may take place. Transparent page
sharing [16], [34] is a prevalent approach to harness
memory redundancy. Pages are shared among VMs
if they have identical or similar content. The shared
pages except the referenced one are reclaimed from
the VMs, and when sharing is broken, new pages will
be allocated to the VMs. In addition, the first version
of Xen PV network driver used a page flipping4

mechanism which swapped the page containing the
received packet with a free page of the VM [21].

To cope with these challenges, an event channel is
employed in Domain0. If any of the primary VM’s
pages is changed, hypervisor sends a notification to
Domain0 through the event channel. Upon notifica-
tion, Domain0 updates the corresponding L1 shadow
entry to point to the new page.

5 EVALUATION

The optimizations presented in the previous section
are implemented on Xen-3.3.1, with Domain0 and
the primary VM running XenoLinux version 2.6.18
configured with 32-bit PAE kernel.

All the experiments are based on a testbed con-
sisting of two HP ProLiant DL180 Servers, each with
two quad-core 2.5GHz processors (8 cores in total),
12G memory and a Broadcom TG3 network interface.
The machines are connected via switched Gigabit
Ethernet. We deploy the primary VM on one of the
two machines, and the backup VM on the other. The
primary VM is configured with 2G memory. The Do-
main0 is configured with the remaining 10G memory
and 4 virtual CPUs that are pinned to different cores
of the other CPU socket.

In this paper, we focus on the performance over-
head resulting from synchronizing memory state be-
tween the primary VM and the backup VM in each
epoch. The snapshot of virtual disk and network
output commit, which are two other components of
the HBFT system, are disabled in these experiments to
eliminate their influence. The system performance is
sensitive to the length of an epoch. Unless otherwise
specified, we set an epoch 20 msec as default, and
the primary VM is configured with one CPU core.

4. Menon et al. [35] has shown that page flipping is unattractive.

CINT CFP SPECjbb SPECweb
0

10

20

30

40

50

60

70

80

N
or

m
al

iz
ed

 P
er

fo
rm

ac
e

(%
)

Not Optimized
LogDirty Optimized
LogDirty−Map Optimized

Fig. 9. The overall performance of the primary VM
normalized to performance of the native VM.

In section 5.5, we will evaluate the sensitivity of the
length of epoch and the number of primary VM’s CPU
cores.

5.1 Workload Overview
We evaluate our optimization techniques with a va-
riety of benchmarks representative of real-world ap-
plications. Table 1 lists the workloads. Among them,
SPECjbb and SPECweb are server applications and
candidates for fault tolerance in the real world. The
server of SPECweb runs in the primary VM, and two
separate client machines and one backend simula-
tor (BeSim) are connected with the primary VM via
switched Gigabit Ethernet. CINT and CFP are also
presented for reference points. We run each workload
three times and the average value is presented in this
paper.

5.2 Overall Result
Fig 9 shows the performance of the primary VM
which runs different workloads, and the performance
is normalized to that of the native VM running in
Xen (baseline). We present the following configura-
tions: ‘Non Optimized’ refers to the unoptimized
HBFT. ‘LogDirty Optimized’ refers to the version with
only the log dirty mode optimized, including read
fault reduction and write fault prediction. ‘LogDirty-
Map Optimized’ refers to the optimized version with
both the optimized log dirty mode and the software
superpage map. We do not compare the performance
with that of the applications running in native operat-
ing systems (i.e., non-virtualized environment) since
the overhead resulting from virtualization is not the
focus of this work. In practice, virtualization has been
widely deployed for its key benefits, such as server
consolidation and isolation.

As shown in Fig 9, CINT suffers the worst per-
formance degradation when running in the unopti-
mized HBFT, yielding only about 30% of baseline
performance. This is because it has a large writable

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 9

TABLE 1
Workloads Description.

Workload Description
CINT SPEC CPU2006 integer benchmark suite.
CFP SPEC CPU2006 floating point benchmark suite.

SPECjbb SPECjbb2005 configured with Java 1.6.0.
A benchmark that is used to evaluate the performance of Internet servers running Java applications.

SPECweb SPECweb2005 configured with Apache 2.2.
A benchmark that is used to evaluate the performance of World Wide Web Servers.

working set which leads to high overhead by log dirty
mode and memory mapping. With our optimized
log dirty mode and the additional software superpage
mechanism, the performance of CINT improves by
33.2% and 84.5%, respectively.

Relative to the optimized log dirty mode, software
superpage optimization gains more improvement for
all workloads. Our optimizations improve the perfor-
mance of the primary VM by a factor of 1.4 to 2.2
and achieves about 60% of that of the native VM. In
the following, we will examine each optimization in
detail.

5.3 Log Dirty Mode Improvement
5.3.1 Experimental Setup
The log dirty mode is the mechanism to record which
memory pages are dirtied. To better understand its
impact on performance, we study this mechanism
in isolation as follows: at the beginning of each
epoch, we mark all memory pages of the primary
VM read-only with a hypercall. Then, the primary VM
resumes running for an epoch of 20msec. The other
components of HBFT are disabled during the above
procedure.

5.3.2 Log Dirty Mode Efficiency
We evaluate the log dirty mode with the following
configurations: ‘OriginXen’ refers to the Xen with the
unoptimized log dirty mode, ‘RFRXen’ refers to the
version with the read fault reduction optimization and
‘WFPXen’ refers to the optimized version with the
additional write fault prediction.

Performance. Fig 10 compares the performance of
the primary VM running in different versions of the
log dirty mode with that of the native VM. The
results show that the log dirty mode of OriginXen
incurs substantial performance degradation, ranging
from 19.8% on CFP to 57.4% on SPECweb. RFRXen,
which exploits the behavior of shadow entry reuse,
improves the performance of CINT by 31.1% relative
to OriginXen. It should be noted that though SPECweb
experiences a large number of requests with short
session, it still derives much benefit from RFRXen,
gaining 55.2% improvement.

Based on RFRXen, WFPXen improves the log dirty
mode further by predicting shadow page write-faults.

CINT CFP SPECjbb SPECweb
0

10

20

30

40

50

60

70

80

90

100

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

(%
)

OriginXen
RFRXen
WFPXen

Fig. 10. The performance of memory tracking mecha-
nism normalized to performance of the native VM.

CINT CFP SPECjbb SPECweb
30

20

10

0

10

20

30

40

50

60

70

C
ou

nt
 o

f S
ha

do
w

 P
ag

e
F

au
lt(

x1
00

)

Read Fault
Write Fault

Fig. 11. Count of shadow page faults. Each bar indi-
cates the total count of shadow page faults, and the
upper half indicates the count of shadow page write-
fault and the lower half indicates the count of shadow
page read-fault. From left to right, OriginXen, RFRXen
and WFPXen.

As expected, CINT, CFP and SPECjbb are improved
further, by 21.4%, 5.6%, and 8.9%, respectively, since
they have fine spatial locality as demonstrated in Fig
5. Especially, SPECjbb achieves nearly 95% of baseline
performance. However, the applications with poor
spatial locality yield little improvement. SPECweb
even suffers one score of degradation (from 402 in
RFRXen to 401 in WFPXen). We will analyze these
further by the reduction of shadow page faults and
by prediction accuracy.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 10

CINT CFP SPECjbb SPECweb
0

10

20

30

40

50

60

70

80

90

100
R

ec
al

l/P
re

ci
se

(%
)

Recall
Precise

Fig. 12. Shadow page write-fault prediction

Reduction of Shadow Page Faults. To determine
where our optimization techniques differ from Orig-
inXen, Fig 11 demonstrates the average count of
shadow page faults per epoch with different configu-
rations. RFRXen almost reduces the average count of
shadow page read-faults to zero for most applications
investigated. However, SPECweb still suffers consider-
able read-faults. SPECweb consumes more SPTs since
many concurrent processes exist and the working set
is very large. Due to the constraint of memory size
reserved for SPTs, Xen has to destroy some of SPTs
for newly allocated ones, even though those SPTs will
be used in the near future. Besides, destroying and
allocating SPTs are common since most of the pro-
cesses have a short lifetime. The majority of shadow
page read-faults come from non-existing shadow en-
tries, and many read-faults remain in SPECweb. We
are investigating to resize some resource limits of
Xen to cope with the larger working set of today’s
applications.

A somewhat counter-intuitive result is that most
applications running in RFRXen experience more
shadow page write-faults per epoch than in Orig-
inXen (e.g., 934 more for CINT). This is because the
elimination of most shadow page read-faults makes
the system run faster. As a result, more application
instructions are issued during a fixed epoch, which
incurs more shadow page write-faults.

Prediction Accuracy. Histase combines the behaviors
of spatial locality and history-similar pattern to pre-
dict shadow page write-faults. To better understand
the effectiveness of Histase, we use the terminologies
from information retrieval [36]: recall is the number
of true predictions divided by the total number of
dirty pages in each epoch and precise is the number
of true predictions divided by the total number of
predictions. In this experiment, recall can be seen as
a measure of completeness, whereas precision can be
seen as a measure of exactness.

Fig 12 shows that Histase behaves differently
among the workloads. As expected in Fig 5, the appli-
cations with fine spatial locality benefit the most. Take

TABLE 2
Mapping hit ratio of software superpage.

Workload CINT CFP SPECjbb SPECweb
Hit Ratio 97.27% 97.25% 97.80% 79.45%

CFP for example. Histase predicts 68.5% of shadow
page write-faults, with false predictions being only
29.3%. Histase predicts few shadow page write-faults
in SPECweb because of its poor spatial locality, as
demonstrated in Fig 5. However, Histase still pre-
dicts with high precise since it bases its prediction on
history-similar pattern, and retains application perfor-
mance.

5.4 Software Superpage Evaluation
With limited virtual address space of Domain0, soft-
ware superpage eliminates almost all of the mem-
ory mapping operations, reducing the primary VM’s
paused period drastically. Throughout this paper, we
allocate a fixed 64M virtual address space in Domain0
in order to map all the memory pages of the primary
VM (2G).

The performance of software superpage mainly de-
pends upon how effectively we use limited virtual
address to map dirty pages. The LRU algorithm is
intended to unmap the pages that are least likely to
be dirtied again, and here we evaluate how well it
achieves that goal.

Table 2 shows the mapping hit ratio for different
workloads running in the primary VM. The hit ratio
reveals the probability that a newly dirtied page has
already been mapped into the limited virtual address
space. Due to the memory access locality, software
superpage performs well for most workloads, with a
hit ratio of over 97%. This mechanism works not so
well for the workloads with poor locality, which is
confirmed by the hit ratio of SPECweb. Nevertheless,
it has mapped nearly 80% of the dirty pages accessed.

With a high hit ratio, software superpage eliminates
almost all of the mapping operations, reducing the
length of the paused state greatly. As shown in Fig
9, software superpage improves the performance of the
primary VM by at least 30% relative to the unopti-
mized HBFT.

5.5 Sensitivity to Parameters
5.5.1 Length of Epoch
The performance of the primary VM and the output
latency is sensitive to the epoch length since the
output generated in each epoch is delayed until the
primary host receives the acknowledgement from the
backup host [10]. Shorter checkpoint epoch means
shorter output latency but higher performance degra-
dation to the primary VM, while longer checkpoint
epoch means better performance but longer output
latency.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 11

20 40 60 80 100 200
50

55

60

65

70

75

80

85

90

95

100

Length of Epoch (msec)

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

(%
)

OriginXen
RFRXen
WFPXen

Fig. 13. Performance of memory tracking mechanism.
The epoch length ranges from 20msec to 200msec.

NativeVM OriginXen RFRXen WFPXen
0

1

2

3

4

5

6

7

8
x 10

4

S
pe

cJ
bb

 T
hr

ou
gh

pu
t

One Core
Dual Core
Quad Core

Fig. 14. The throughput of SPECjbb running with
different memory tracking mechanism.

Fig 13 shows the performance of memory track-
ing mechanism when the epoch length ranges from
20msec to 200msec. It presents the normalized per-
formance of SPECjbb running with memory tracking
enabled, relative to its performance in the native VM.
We can see that our optimizations accelerates the per-
formance of the primary VM under all configurations,
but the gain decreases as the epoch length increases.

In this paper, we focus on the implementation
of the memory tracking mechanism. How to select
the epoch length is left to the applications. For ap-
plications with high performance requirements (e.g.,
HPC applications [37]), a long epoch length is ap-
propriate. But for I/O intensive applications, such as
web servers, shorter epoch is necessary to maintain
the responsiveness of user requests. Additionally, for
some complicated applications, it is also appropriate
to choose dynamic checkpoint scheduling, such as
aperiodic checkpointing [38] and cooperative check-
pointing [39].

5.5.2 CPU Core Numbers
To demonstrate our optimizations in multi-core VMs,
we evaluate the performance of the memory tracking

One Core Dual Core Quad Core
0

1

2

3

4

5

6

7

8
x 10

4

S
pe

cJ
bb

 T
hr

ou
gh

pu
t

NativeVM
OriginXen
RFRXen
WFPXen

Fig. 15. The throughput of SPECjbb running with
different number of CPU cores.

TABLE 3
Mapping hit ratio of software superpage.

CPU Cores/JVM instances Mapping Hit Ratio
One 97.80%
Two 95.98%
Four 91.26%

mechanism and the efficiency of software superpage
with SPECjbb suite running in the primary VM config-
ured with different number of CPU cores. In each test,
we set the number of JVM instances as the number of
CPU cores of the primary VM. In this experiment, the
length of epoch is set to 20msec.

Fig 14 shows the throughput of SPECjbb config-
ured with different memory tracking mechanism, and
Fig 15 shows the throughput of SPECjbb configured
with different number of CPU cores. As shown in
Fig 14, ”NativeVM” configuration, which does not
enable memory tracking, shows the best through-
put of SPECjbb running in a VM with different
number of CPU cores. From Fig 15, we find that
in the un-optimized(”OriginXen”) implementation of
memory tracking, the relative performance descends
drastically with the increase of core numbers. The
throughput is surprisingly no more than 5% of the
best throughput when the primary VM is configured
with four cores. Our optimizations accelerates the
performance of memory tracking under all config-
urations. Even in the four-core primary VM, our
optimized memory tracking mechanism promotes the
performance of SPECjbb to nearly 50% of the best
performance.

Table 3 presents the mapping hit ratio of software
superpage when the primary VM runs SPECjbb in it.
With the increase of JVM instances, the working set
of the primary VM becomes larger and the spatial
locality of modified pages in each epoch becomes
worse. The mapping hit ratio of software superpage
decreases accordingly because software superpage
relies heavily on spatial locality of modified pages

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 12

in each epoch. Nevertheless, the mapping hit ratio
remains higher than 90% for SPECjbb.

6 RELATED WORK
Hypervisor-based fault tolerance is an emerging so-
lution to sustain mission-critical applications. Bres-
soud and Schneider [40] proposed the pioneering
system with the lockstep method which depends
upon architecture-specific implementation. Lockstep
requires deterministic replay on the backup VM and is
not convenient for multi-core systems. Recently, based
on Xen live migration, Remus [5] and Kemari [6]
provide an alternative solution. However, like most
checkpoint-recovery systems, both Remus and Ke-
mari incur serious performance degradation for the
primary VM. We develop a similar HBFT system,
Taiji. In this paper, we abstract a general architecture
of these systems and illustrate where the overhead
comes from.

How to address the overhead of HBFT has at-
tracted some attention. Closest to our work is Lu
and Chiueh’s [12]. They focused on minimizing the
checkpoint size transferred at the end of each epoch
by fine-grained dirty region tracking, speculative state
transfer and synchronization traffic reduction using
an active backup system. We improve the perfor-
mance of the primary VM by addressing the overhead
of memory page tracking and the overhead of mem-
ory mapping between virtual machines. Though the
focuses are different, these two studies are comple-
mentary to each other.

Checkpoint-recovery mechanism has been used in
various areas to tolerate failures [41], [42], [13]. Many
researchers have been engaged in reducing check-
pointing overhead. For example, incremental check-
pointing [43] is exploited by reducing the amount of
data to be saved. The objective of our work is to
optimize the checkpointing implementation based on
hypervisor, which presents a different challenge.

Prefetching is a well-known technique widely ap-
plied in computer systems. There is a large body of
literature on prefetching for processor caches, which
can be viewed in two classes: those that capture
strided reference patterns [44], and those that make
prefetching decision on historic behavior [45]. In ad-
dition, many researchers have focused on reducing
MMU walks by prefetching page table entries into
TLB. Distance prefetching [46], which approximates the
behavior of stride based mechanism and tracks the
history of strides, is similar to our Histase prefetching.

Interestingly, our software superpage optimization
borrows the idea of temporary kernel mappings [47].
Every page in high memory can be mapped through
fixed PTEs in the kernel space, which is also an in-
stance of mapping large physical memory by limited
virtual addresses.

software superpage is inspired by the advantages
of superpage which has been well studied in the

literature [31]. Superpage has been adopted by many
modern operating systems, such as Linux [47] and
FreeBSD [48]. These studies rely on hardware im-
plementations of superpages which restrict to map
physically continuous page frames. Swanson et al. [49]
introduced an additional level of address translation
in memory controller so as to eliminate the continuity
requirement of superpages. Our software superpage
mechanism, which also avoids the continuity require-
ment, is designed to reduce the overhead of mapping
memory pages between VMs.

7 CONCLUSION

One of the disadvantages of HBFT is that it incurs too
much overhead to the primary VM during failure-free.
In this paper, we first analyze where the overhead
comes from in a typical HBFT system. Then, we
analyze memory accesses at the granularity of epochs.
Finally, we present the design and implementation of
the optimizations to HBFT. We illustrate how we ad-
dress the following challenges, including: a) analyzing
the behavior of shadow entry accesses, b) improving
the log dirty mode of Xen with read fault reduction
and write fault prediction, and c) designing software
superpage to map large memory region between VMs.
The extensive evaluation shows that our optimiza-
tions improve the performance of the primary VM by
a factor of 1.4 to 2.2 and the primary VM achieves
about 60% of the performance of that of the native
VM.

ACKNOWLEDGMENTS

The authors would like to thank the anonymous
reviewers for their invaluable feedback. This work
is supported by the National Grand Fundamen-
tal Research 973 Program of China under Grant
No.2007CB310900, the MoE-Intel Joint Research Fund
MOE-INTEL-09-06, and the SKLSDE-2010KF of State
Key Laboratory of Software Development Environ-
ment.

REFERENCES
[1] J. Zhu, W. Dong, Z. Jiang, X. Shi, Z. Xiao, and X. Li, “Improving

the Performance of Hypervisor-Based Fault Tolerance,” in
Proceedings of the 24th IEEE International Parallel and Distributed
Processing Symposium (IPDPS ’10), 2010.

[2] N. Rafe, “Minor Outage at Facebook Monday,” 2009.
[3] R. Miller, “IBM Generator Failure Causes Airline Chaos,” 2009.
[4] R. Miller, “Codero Addresses Lengthy Power Outage,” 2010.
[5] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson,

and A. Warfield, “Remus: High Availability via Asynchronous
Virtual Machine Replication,” in Proceedings of the 5th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI ’08), 2008.

[6] Y. Tamura, K. Sato, S. Kihara, and S. Moriai, “Kemari: Virtual
Machine Synchronization for Fault Tolerance,” 2008.

[7] “Taiji.” [Online]. Available:
http://net.pku.edu.cn/vc/files/ft/index.html

[8] J. Gray, “Why Do Computers Stop and What Can Be Done
About It?” in Proceedings of the 3rd Symposium on Reliability in
Distributed Software and Database System (SRDS ’86), 1986.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 13

[9] R. P. Goldberg, “Survey of Virtual Machine Research,” IEEE
Computer, vol. 7, no. 6, pp. 34–45, 1974.

[10] E. N. Elnozahy and W. Zwaenepoel, “Manetho: Transparent
Rollback-Recovery with Low Overhead, Limited Rollback, and
Fast Output Commit,” IEEE Transactions on Computers, vol. 41,
no. 5, pp. 526–531, 1992.

[11] W. Bartlett, “HP NonStop Server: Overview of an Integrated
Architecture for Fault Tolerance,” in 2nd Workshop on Evaluat-
ing and Architecting System Dependability, 1999.

[12] M. Lu and T.-c. Chiueh, “Fast Memory State Synchronization
for Virtualization-based Fault Tolerance,” in Proceedings of the
39th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN ’09), 2009.

[13] E. N. Elnozahy, L. Alvisi, Y.-M. Wang, and D. B. Johnson,
“A Survey of Rollback-Recovery Protocols in Message-Passing
Systems,” ACM Computing Surveys, vol. 34, no. 3, pp. 375–408,
2002.

[14] J. Nakano, P. Montesinos, K. Gharachorloo, and J. Torrellas,
“ReViveI/O: Efficient Handling of I/O in Highly-Available
Rollback-Recovery Servers,” in Proceedings of the 12th Inter-
national Symposium on High-Performance Computer Architecture
(HPCA ’06), 2006.

[15] AMD, AMD64 Architecture Programmer’s Manual Volume 2:
System Programming, 2006.

[16] C. A. Waldspurger, “Memory Resource Management in
VMware ESX Server,” ACM SIGOPS Operating Systems Review,
vol. 36, no. SI, p. 181, 2002.

[17] K. Adams and O. Agesen, “A Comparison of Software and
Hardware Techniques for x86 Virtualization,” in Proceedings
of the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’06),
2006.

[18] VMware, “Protecting Mission-Critical Workloads with
VMware Fault Tolerance,” 2009.

[19] “Marathon.” [Online]. Available:
http://www.marathontechnologies.com/

[20] G. W. Dunlap, D. G. Lucchetti, M. A. Fetterman, and P. M.
Chen, “Execution Replay of Multiprocessor Virtual Machines,”
in Proceedings of the fourth ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE ’08), 2008.

[21] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho,
R. Neugebauer, I. Pratt, and A. Warfield, “Xen and the Art
of Virtualization,” ACM SIGOPS Operating Systems Review,
vol. 37, no. 5, p. 164, 2003.

[22] D. A. Patterson, G. Gibson, and R. H. Katz, “A Case for Re-
dundant Arrays of Inexpensive Disks (RAID),” Proceedings of
the 1988 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’88), 1988.

[23] “Synology.” [Online]. Available: http://www.synology.com
[24] C. Clark, K. Fraser, S. Hand, J. G. Hansen, E. Jul, C. Limpach,

I. Pratt, and A. Warfield, “Live Migration of Virtual Machines,”
in Proceedings of the 2nd Symposium on Networked Systems Design
and Implementation (NSDI ’05), 2005.

[25] M. Nelson, B. Lim, and G. Hutchins, “Fast Transparent Migra-
tion for Virtual Machines,” in Proceedings of the 2005 USENIX
Annual Technical Conference (USENIX ’05), 2005.

[26] A. Burtsev, K. Srinivasan, P. Radhakrishnan, L. N. Bairavasun-
daram, K. Voruganti, and G. R. Goodson, “Fido: Fast Inter-
Virtual-Machine Communication for Enterprise Appliances,”
in Proceedings of the 2009 USENIX Annual Technical Conference
(USENIX ’09), 2009.

[27] “CINT2006.” [Online]. Available:
http://www.spec.org/cpu2006/CINT2006/

[28] “CFP2006.” [Online]. Available:
http://www.spec.org/cpu2006/CFP2006/

[29] “SPECjbb2005.” [Online]. Available:
http://www.spec.org/jbb2005/

[30] “SPECweb2005.” [Online]. Available:
http://www.spec.org/web2005/

[31] A. Silberschatz, P. Galvin, and G. Gagne, Operating System
Principles. Wiley India Pvt. Ltd., 2006.

[32] Intel, Intel 64 and IA-32 Architectures Software Developer’s Man-
ual, 2009.

[33] D. Hansen, M. Kravetz, B. Christiansen, and M. Tolentino,
“Hotplug Memory and the Linux VM,” in Proceedings of the
2004 Ottawa Linux Symposium, 2004.

[34] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat, “Difference Engine:
Harnessing Memory Redundancy in Virtual Machines,” in
Proceedings of the 8th USENIX Symposium on Operating System
Design and Implementation (OSDI ’08), 2008.

[35] A. Menon, A. L. Cox, and W. Zwaenepoel, “Optimizing Net-
work Virtualization in Xen,” in Proceedings of the 2006 USENIX
Annual Technical Conference (USENIX ’06), 2006.

[36] R. Baeza-Yates and B. Ribeiro-Neto, Modern Information Re-
trieval. Addison-Wesley Reading, MA, 1999.

[37] M. F. Mergen, V. Uhlig, O. Krieger, and J. Xenidis, “Virtu-
alization for High-Performance Computing,” ACM SIGOPS
Operating Systems Review, vol. 40, no. 2, p. 8, 2006.

[38] Y. Ling, J. Mi, and X. Lin, “A Variational Calculus Approach
to Optimal Checkpoint Placement,” IEEE Transactions on Com-
puters, vol. 50, no. 7, pp. 699–708, 2001.

[39] A. J. Oliner, L. Rudolph, and R. K. Sahoo, “Cooperative
Checkpointing: A Robust Approach to Large-Scale Systems
Reliability,” in Proceedings of the 20th Annual International Con-
ference on Supercomputing (ICS ’06), 2006.

[40] T. C. Bressoud and F. B. Schneider, “Hypervisor-Based Fault
Tolerance,” in Proceedings of the 15th ACM Symposium on
Operating Systems Principles (SOSP ’95), 1995.

[41] C. Studies, D. Patterson, A. Brown, P. Broadwell, G. Can-
dea, M. Chen, J. Cutler, P. Enriquez, A. Fox, E. Kcman,
M. Merzbacher, D. Oppenheimer, N. Sastry, W. Tetzlaff,
J. Traupman, and N. Treuhaft, “Recovery Oriented Computing
(ROC): Motivation, Definition, Techniques, and Case Studies,”
pp. 1–16, 2002.

[42] S. Sankaran, J. M. Squyres, B. Barrett, A. Lumsdaine, J. Du-
ell, P. Hargrove, and E. Roman, “The LAM/MPI check-
point/restart framework: System-initiated checkpointing,” In-
ternational Journal of High Performance Computing Applications,
vol. 19, no. 4, pp. 479–493, 2005.

[43] G. Bronevetsky, D. J. Marques, K. K. Pingali, R. Rugina, and
S. A. McKee, “Compiler-Enhanced Incremental Checkpointing
for OpenMP Applications,” in Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP ’08), 2008.

[44] F. Dahlgren, M. Dubois, and P. Stenstrom, “Fixed and Adap-
tive Sequential Prefetching in Shared Memory Multiproces-
sors,” in Proceedings of the 1993 International Conference on
Parallel Processing (ICPP ’93), 1993.

[45] D. Joseph and D. Grunwald, “Prefetching using Markov pre-
dictors,” in Proceedings of the 24th Annual International Sympo-
sium on Computer Architecture (ISCA ’97), 1997.

[46] G. B. Kandiraju and A. Sivasubramaniam, “Going the Dis-
tance for TLB Prefetching: an Application-Driven Study,” in
Proceedings 29th Annual International Symposium on Computer
Architecture (ISCA ’02), 2002.

[47] D. Bovet and M. Cesati, Understanding the Linux Kernel.
O’Reilly Media, Inc, 2005.

[48] J. Navarro, S. Iyer, P. Druschel, and A. Cox, “Practical, Trans-
parent Operating System Support for Superpages,” in Proceed-
ings of the 5th USENIX Symposium on Operating System Design
and Implementation (OSDI ’02), 2002.

[49] M. Swanson, L. Stoller, and J. Carter, “Increasing TLB Reach
Using Superpages Backed by Shadow Memory,” in Proceedings
of the 25th Annual International Symposium on Computer Archi-
tecture (ISCA ’98), 1998.

Jun Zhu is a PhD student in the School
of Electronics Engineering & Computer Sci-
ence, Peking University. He received his
bachelor degree in the School of Computer
Science at Beijing University of Aeronautics
and Astronautics in 2006. His research in-
terests include distributed system, fault tol-
erance, operating system and virtualization.
His recent research aims to provide fast re-
covery from hardware failures and software
failures for mission-critical services.

IEEE TRANSACTIONS ON COMPUTERS, VOL. X, NO. X, XX 20XX 14

Zhefu Jiang is a graduate student studying
at Computer Network and distributed System
Laboratory, Peking University. He received
his bachelor degree from HuaZhong Univer-
sity of Science and Technology, majoring in
Computer Science. During his student life,
he focus on exploring system level devel-
oping techniques, especially OS and Virtu-
alization development. He is also a student
who shares a great interest in Open-Source
techniques such as Xen, Linux and other

GNU projects.

Zhen Xiao is a Professor in the Department
of Computer Science at Peking University.
He received his Ph.D. from Cornell University
in January 2001. After that he worked as a
senior technical staff member at AT&T Labs
- New Jersey and then a Research Staff
Member at IBM T. J. Watson Research Cen-
ter. His research interests include cloud com-
puting, virtualization, and various distributed
systems issues. He is a senior member of
IEEE.

Xiaoming Li , a professor of Peking Univer-
sity, received his Ph.D. in Computer Science
from Stevens Institute of Technology (USA)
in 1986 and has since taught at Harbin Insti-
tute of Technology and Peking University. He
has founded the Chinese web archive We-
bInfoMall (http://www.infomall.cn), the search
engine Tianwang (http://e.pku.edu.cn), the
peer-to-peer file sharing network Maze
(http://maze.pku.edu.cn), and other popular
web channels. He is a member of Eta Kappa

Nu, a senior member of IEEE, currently a Vice President of Chinese
Computer Federation, International Editor of Concurrency (USA),
and Associate Editor of Journal of Web Engineering (Australia). He
has published over 100 papers, authored Search Engine Princi-
ple, Technology, and Systems (Science Press, 2005), and received
numerous achievement awards from the Ministry of Science and
Technology, Beijing Municipal Government, and other agencies.

