
Hypervisor-Assisted Application Checkpointing in Virtualized Environments
Min Lee

∗

, A. S. Krishnakumar
†
, P. Krishnan

†
, Navjot Singh

†
, Shalini Yajnik

†
*
Georgia Institute of Technology, Atlanta, GA 30332

†
Avaya Labs, Basking Ridge, NJ 07920

minlee@cc.gatech.edu, {ask, pk, singh, shalini}@avaya.com

Abstract—

There are two broad categories of approaches used for

checkpointing: application-transparent and application-

assisted. Typically, application-assisted approaches provide a

more flexible and light-weight mechanism but require changes

to the application. Although most applications run well under

virtualization (e.g. Xen which is being adopted widely), the

addition of application-assisted checkpointing - used for high

availability - causes performance problems. This is due to the

overhead of key system calls used by the checkpointing

techniques under virtualization.

To overcome this, we introduce the notion of hypervisor-

assisted application checkpointing with no changes to the guest

operating system. We present the design and a Xen-based

implementation of our family of application checkpointing

techniques. Our experiments show performance improvements

of 4x to 13x in the primitives used for supporting high

availability compared to purely user-level approaches.

Keywords - virtualization; hypervisor; Xen; checkpointing;

high-availabiliy

I. INTRODUCTION

Checkpoint/restart is one of the standard mechanisms for
achieving high availability in long running computing
systems [1]. The state of the application and/or the OS is
either stored locally or carried over the network to a backup
machine for future recovery. There has been extensive
research in the area of checkpointing in the last two decades
 [2] [3] [4] [5] [6] [7] [8] [9]. Libckp [2], libckpt [3], Condor
checkpointing [5], are some of the initial systems that
incorporated libraries for automated checkpointing.

Research literature classifies checkpointing approaches
into two main categories – (a) application-transparent
checkpoints [1] [2] [3], where the application does not need to
be modified or be aware of the checkpoints happening, and
(b) application-assisted checkpoints [10] [11], where the
application defines the data to be checkpointed and drives
the checkpoints. The application-transparent approaches
have the benefit of not requiring changes to the application.
On the other hand, they have to checkpoint all the
application state and incur higher performance overheads.
Although the application-assisted approaches require
changes to the application, they are usually more efficient
since they can accurately determine the checkpoint size and
frequency based on application demands. Incremental
checkpoints [3] [12] are one way to reduce checkpoint
overheads. As the name suggests, instead of whole memory
checkpoints, only differences from the previous state are
checkpointed. Both the application-transparent and

application-assisted approaches can benefit from the use of
incremental checkpoints.

Virtualization technology is being widely adopted as a
means for server consolidation. Most application servers
deployed under virtualized environments need high
availability, so that they can provide 24×7 service to their
geographically diverse set of clients. The work on replica
coordination techniques by Bressoud [13] was one of the
first to propose high availability under virtualization.
Virtualization platforms like KVM [14], VMware vSphere
 [15] and Xen [16], provide mechanisms like snapshots and
live migration [17], for achieving high availability under
failure conditions. The work by Wang et al. [18] proposes
checkpointing of virtual machines using a special-purpose
checkpointing VM. Remus [19] and Kemari [20] are
examples of application-transparent incremental
checkpointing frameworks in the Xen environment. Both
techniques periodically copy the disk and memory state of
the virtualized OS and the applications to a backup system.
Since each checkpoint copies the entire changed state of the
virtual machine, the data processing and migration overheads
can be significantly high, especially for applications that
need high performance and have a limited data set that they
need for recovery. Our work targets such applications and
focuses on application-assisted incremental checkpointing
techniques.

On the face of it, application-assisted checkpoints can run
unchanged on virtualized platforms. While this is
functionally true, we have observed that there is a significant
performance penalty arising from the inherent nature of
virtualization implementation. Understanding and mitigating
this issue is the main focus of our effort. Incremental
checkpoints are usually implemented using a page-fault
based mechanism. Pages dirtied since the last checkpoint are
tracked by making them read-only and having the
application/OS fault when data is written to those pages [21].
Usually in native environments, implementation of
incremental checkpoints is very efficient. However, in
virtualized environments, due to the overheads related to
trapping multiple times to the hypervisor, the primitives used
to implement the page fault mechanism become very
expensive. (This is explained later in Section II.D.) Our work
in this paper is targeted to address this overhead so that these
primitives can be implemented efficiently under
virtualization, thereby enabling application-assisted
checkpointing techniques to retain their high performance.

In this paper, we introduce a new model: hypervisor-
assisted application checkpointing. In our model, the
hypervisor of the virtualization platform provides efficient
primitives that assist applications to track page fault behavior.
We also introduce a novel mechanism for applications to use

978-1-4244-9233-6/11/$26.00 ©2011 IEEE 371

these hypervisor-provided primitives. Rather than the usual
method of only allowing a guest operating system to use
hypervisor services, we enable an application running inside
the guest OS to invoke these primitives in the hypervisor
directly and securely, without any changes to the guest
operating system. This allows for better code maintenance
and easier deployment, since the underlying operating
system in which the checkpointed application is deployed
does not need to be changed to use our technique. Bypassing
the operating system for specific features the hypervisor
provides, and doing so securely is novel even from the
virtualization standpoint and is motivated by application-
assisted checkpointing.

We present a family of techniques that use our
hypervisor-assistance paradigm and describe their
implementation in the Xen virtualization platform. We have
conducted detailed experiments including microbenchmark
studies and performance results for basic data structure
operations used in standard application transactions. Our
experimental results demonstrate a significant performance
improvement: specifically, a 4x-13x boost in performance in
the page fault primitives that lie at the heart of application
checkpointing techniques.

The rest of the paper is organized as follows. Section II
introduces some basic concepts in application checkpointing
and virtualization and motivates the performance problem of
checkpointing under virtualization. In Section III, we
introduce our model of hypervisor-assisted checkpointing, its
key features, and implementation challenges. Section IV
discusses our family of checkpointing approaches. Section V
explores the performance of our approaches using
microbenchmarks. In Section VI, we use a workload-based
evaluation using data structure operations to study our
techniques and conclude in Section VII.

II. CHECKPOINTING AND VIRTUALIZATION

In this section, we provide a brief background of
checkpointing and virtualization and outline the source of
performance degradation of checkpointing under
virtualization.

A. Application-Assisted Checkpointing

In application-assisted checkpointing techniques, the
application usually defines memory areas that need to be
checkpointed for recovery. We call these segments of the
memory as the critical data area (CDA). At the end of a
checkpoint cycle, the CDA is saved to disk or synchronized
to the backup CDA in an atomic operation. In application-
assisted checkpointing, it is the application’s responsibility to
determine the checkpoint cycle, i.e., the start and end of the
checkpoint. Usually, an application transactionalizes certain
operations or groups of operations on the critical data area by
invoking checkpoint begin and end calls at transaction
boundaries. This results in either all or none of the changes
within a transaction being carried over to the backup.

Figure 1 shows how high availability is achieved by
checkpointing data structures at transaction boundaries. In
this example, each list operation in the figure is treated as a
transaction by the application. At the completion of the list

operation, checkpoint cycle is terminated to copy over the
modified pages to the backup.

Figure 1: Checkpoint and recovery

Application-assisted checkpointing approaches usually

define a simple API which provides the application the
functionality to declare a critical data area (CDA) and define
the start/end of a transaction or checkpoint cycle. Existing
code can be modified to use these primitives to define
checkpointed data and also the transaction boundaries.

B. Incremental Checkpointing

Incremental checkpoint minimizes checkpointing
overhead by synchronizing just the pages that were modified
after the last checkpoint. A page-fault based mechanism is
typically used to determine the modified (dirty) pages
 [3] [12] [21]. At the beginning of a checkpoint cycle, all
pages that are part of the CDA are write-protected by using a
memory protection command (e.g. the mprotect system call).
When the application tries to modify a write-protected page,
a protection violation signal is generated. This signal can be
trapped by a signal handler. The signal handler adds the
address of the faulting page to the list of changed pages and
removes the write protection from the page (e.g. by another
call to mprotect) so that the application can proceed with the
write. At the end of the checkpoint cycle, the list of changed
pages contains all the pages that were modified in this
checkpoint cycle. The program can then be paused
momentarily to save the contents of the changed pages. We
call this technique as page-tracking (PT) based, since it
tracks changes at the page-level granularity.

Existing page-tracking techniques can use an optimization of

difference computation to detect the changes within the page

and then save only the modified words to the backup. This

trades compute overhead for data reduction.

C. Platform Virtualization with Xen

Server consolidation to reduce cost, space and power has
been a driving force behind the success of platform
virtualization. Virtualization allows multiple servers to run
on the same physical hardware without interfering with each
other. A thin layer called hypervisor or Virtual Machine
Monitor (VMM) runs on top of the hardware and provides
virtual hardware interfaces to the VMs.

List_add()

List_del()

List_add()

List_add()

Backup Primary

checkpoint

checkpoint

failover
Crash

372

In the case of Xen (see Figure 2), the hypervisor (VMM)
runs at the highest privilege level and controls the hardware.
Virtual machine instances are also called domains in Xen. A
privileged domain called Dom0 and other non-privileged
guest domains called DomU run above the hypervisor like an
application runs on an OS. Dom0 is a management domain
that is privileged by Xen to directly access the hardware and
it manages the initiation/termination of other domains.

Dom0
(Backend driver)

Hardware (CPU, Memory, Devices)

Xen Hypervisor

DomU
(Frontend

Driver)

DomU
(Frontend

Driver)

DomU
(Frontend

Driver)

Physical interrupt

Event channel

Figure 2: Virtualization with Xen

The hypervisor virtualizes physical resources such as

CPUs and memory for the guest domains. Most of the non-
privileged instructions can be executed by the guest domains
natively without the intervention of the hypervisor. However,
privileged instructions will generate a trap into the
hypervisor. The hypervisor validates the request and allows
it to continue. This makes certain operations such as page
table manipulation especially expensive in virtualized
environments. The guest domain can also use hypercalls to
invoke functions in the hypervisor. For this, the guest OS
needs to be ported to use the functionality and this porting is
called para-virtualization. Xen provides a delegation
approach for I/O via a split device driver model where each
I/O device driver called the backend driver runs in Dom0.
The DomU has a frontend driver that communicates with the
backend driver via event channels and shared memory.

D. Performance Overhead of Checkpointing under

Virtualization

A quick experiment of the performance of page
protection in native vs. virtualized environments, both at the
user level, shows that one page protection call (specifically,
mprotect() calls under Xen) is approximately 4 times slower
under virtualization. To understand why there is this
enormous overhead, we need to look under the hood of how
the relevant system calls operate under virtualization.

During the checkpoint interval, each time the application

writes to a write-protected page, it receives a page fault that
traps into the signal handler. Figure 3 shows how the page-
fault is handled in native and virtual environments like Xen.
Unlike the native environment, under virtualization, this call
is trapped to the hypervisor. The signal handler issues a page
protection call to unprotect the page. This page protection

system call goes into kernel space and issues a call to update
the page table. The page table update invokes a hypercall to
trigger a translation look-aside buffer (TLB) flush because
TLB must be flushed to be synchronized with the page table.
A hypercall is needed since the privileged page table
operations can only be done in the context of the hypervisor.
The increased number of context switches between kernel-
space and the hypervisor and the added overhead of
scheduling each of these in the virtual environment, makes
the whole cycle very expensive.

 (a) Native (b) Under virtualization

Figure 3: Page fault handling on a write operation to a

protected page

Understanding this overhead and its impact on

checkpointing is one contribution of our work. We now
delve into our approaches for solving this issue.

III. HYPERVISOR-ASSISTED CHECKPOINTING

To tackle the significant overhead of page protection
system calls in virtual environments, we introduce a new
model of checkpointing: hypervisor-assisted application
checkpointing. The model has two key aspects: (i) support in
the hypervisor to speed up certain operations that are key to
checkpointing, and (ii) a new model of application-
hypervisor interaction motivated by our checkpointing
application. An important aspect of the model is its
practicality and its feasibility of implementation. To that end,
along with the model we present details of how it can be
implemented in a sample open-source virtualization platform
(namely, Xen). Specific checkpointing techniques that use
this model are discussed later in Section IV.

A. Checkpointing Support in the Hypervisor

The first aspect (namely, support in the hypervisor)
involves changes to the hypervisor to provide primitives that
can track pages changed in a transaction. These primitives
provide the ability for the caller to inform the hypervisor
about (i) the memory associated with the critical data area,
and (ii) the start and end of a transaction. Implementing these
APIs can be considered similar to making an ioctl() or
system call to the hypervisor and the relevant data (e.g.,
identity of the critical data area) is passed as arguments.

At a high level, the hypervisor implements techniques to
track the changes in the critical data area within a transaction

User

OS

TLB flush

page

unprotect()

Page fault

Signal

TLB flush

page

unprotect()

Signal OS

Hypervisor

User

373

and provide the caller with these changes at the end of the
transaction. However, there are interesting design and
implementation issues in how this is tackled by the
hypervisor and we elaborate on these below.

One key issue is that the hypervisor must be able to over-
ride the application page fault handling mechanism, so that it
can tackle it in the hypervisor. This is relatively simple,
given the higher privilege level at which the hypervisor
operates. In particular, a new page fault handler in the
hypervisor checks if a fault is within the critical data area
registered with it and, if so, handles the fault and returns a
success so execution can proceed normally in the application.
A second related design issue is what to do in the fault
handler. One possible approach is to track the identity of the
faulted page, which is a hypervisor-assisted counterpart to
the PT approach from Section II.B and is elaborated on in
Section IV.A. However, our architecture is general enough to
allow the fault handling logic to be pluggable. This allows
for interesting new techniques supported by our paradigm
and they are described in Section IV.

Another design issue is process identification, since
isolation is a key feature of virtualization that must continue
to be supported. While this also appears to be straight-
forward, in practice it is not trivial. The currently running
process is not visible to the hypervisor. However, there is an
interesting technique based on address space changes where
the address space is used to infer the identity of the process
and this is discussed in more detail below in subsection D.

Hypervisors are designed to have a low footprint. Clearly,
storage of too much information within the hypervisor
context is undesirable. The bulk of the storage for our
techniques involves tracking and maintaining the changed
data through the checkpoint cycle. In our architecture, the
caller allocates space for storing this information, and the
hypervisor directly writes to that area. This obviates the need
for maintaining this information within the hypervisor.

B. Application-Hypervisor Interaction

In our discussion above in subsection A, we deliberately
avoided the issue of how the primitives provided by the
hypervisor are invoked by the application. This is a crucial
aspect of our technique and we elaborate on that below.

A hypercall is a software trap from a guest OS to the
hypervisor, just as a syscall is a software trap from an
application to the kernel. Guest domains use hypercalls to
request privileged operations like updating the page-tables.
Traditionally hypercalls are only possible from inside the
guest operating system. Applications are not allowed to
invoke hypercalls directly. The traditional approach would,
therefore, create corresponding system calls in the guest
operating system that will be invoked by the application,
which would then translate to our checkpointing hypercalls.
Although potential performance benefits may still be realized
by this implementation, there is a deployment issue.
Changing the guest operating system for each deployment
supported by the application is non-trivial.

To tackle this issue, we introduce the concept of secure
direct hypervisor calls from the application. This is useful
when a guest domain needs to be deployed using an

unmodified guest OS. In this model, the application directly
talks to the hypervisor bypassing the guest OS. This model
of communication is also novel from a virtualization
perspective.

There are a few ways in which the model can be
implemented. Regular system calls and hypercalls from the
guest operating system are traditionally implemented in x86
architectures via an interrupt vector with values 0x80 and
0x82 respectively. We have implemented the user-to-
hypervisor call through an additional interrupt vector 0x84 as
shown below.

Figure 4: User-to-Hypervisor Call

For security purposes, only a set of pre-defined hypercalls
are allowed to use the 0x84 interrupt vector. Additionally,
these hypercalls are only allowed to work in the process
space of the calling process, thereby creating a level of
isolation essential for security. (Isolation is obtained using
the techniques in subsection D.)

There are alternative approaches. For example,
communication between the application and the hypervisor
could be done through a shared memory that is
communicated by the application to the hypervisor through a
privileged domain like Dom0 in Xen. For brevity, we do not
elaborate on these alternative approaches.

C. Access Control

It is possible that administrators would like to limit the
application instances that can invoke the hypervisor-assisted
checkpointing primitives. Authorization of valid applications
can be done by using a policy module in Dom0. To achieve
this, the application inside the guest domain can be
provisioned with a key, and this key can be used to
authenticate it to the hypervisor via a privileged domain like
Dom0. The application can initiate the process via a network
connection to Dom0. The privileged domain Dom0 can
provide the mechanisms for registering the application and
issuing any required shared tokens. Once the application is
registered with Dom0, it is allowed to invoke the hypercalls
directly.

D. Implementation: Process tracking

As discussed earlier, a user space process in the guest OS
is allowed to make hypercalls to invoke functionality directly
in the hypervisor. For security and functionality, Xen needs
to uniquely identify the user process when it makes a

Hardware (CPU, Memory, Devices)

Xen Hypervisor

Guest OS

Application

0x84:

Hypercall

0x80:

syscall

0x82:

Hypercall

Traditional

Approach

Our

Approach

374

hypercall. This requires guest process tracking at the
hypervisor-level.

In Linux, each process has a unique address space and
our technique uses this for identifying the process within the
hypervisor [22] [23]. Our technique is based on the fact that
the address space change is visible to the hypervisor
although a guest process or a task is not. For example, on
x86 architectures, a new value being loaded onto a cr3
register (page directory) indicates loading of a new address
space and this action is done by the hypervisor. When the
guest installs a new value into the cr3 register, Xen validates
this entry. This indicates the creation of a new guest process
to the hypervisor. Similarly, when the guest process
terminates, its address space is torn down and the pages are
unmarked and returned to the guest operating system. This is
also tracked by the hypervisor. In practice, this simple
method works well [22] [23] for tracking the identity of a
user-space process.

IV. OUR APPROACHES

In this section, we introduce our incremental
checkpointing approaches. In addition to hypervisor-assisted
page-tracking based approach (PTxen), we also introduce a
new concept of emulation-based approaches. Emulation-
based approaches for checkpointing have not been studied in
earlier literature and both hypervisor-assisted (Emulxen) and
user-level (Emul) emulation techniques are introduced in this
paper. Additionally, motivated by live migration techniques
in Xen [17], we present a page-table scanning based
approach that we call Scanxen.

Table 1 below gives a high-level categorization of our
approaches and existing approaches (prior work in italics).
Hypervisor-assisted approaches implement most of their
functionality in the hypervisor while user-space approaches
do so in pure user space. Scan-based approaches need full
support from the hypervisor and do not have an equivalent
implementation in user-space.

 Page-tracking
based

Emulation-
based

Scan-based

Pure user
space

Page-tracking (PT) Emul

Hypervisor-
assisted

PTxen Emulxen Scanxen

Table 1: Categorization of checkpoint approaches

A. Page-tracking based hypervisor-assisted: PTxen

PTxen is a page-tracking based approach similar to the
PT technique presented in Section II.B, but implemented
mostly inside the hypervisor. At the beginning, when the
application declares its critical data area, the hypervisor
installs the address ranges for the critical data area in an
internal data structure. At the start of each checkpoint cycle,
the hypervisor write-protects all the pages in the critical data
area for the application. The hypervisor also overrides the
standard page-fault handler to trap any writes to the pages.
When the application writes to a page, the page fault handler

within the hypervisor is invoked. This in turn puts the page
in the modified page list and unprotects the page.

Figure 5: Page fault handling with PTxen

Figure 5 shows the operation of PTxen. As seen in the

figure, the page-fault is trapped by the hypervisor and
operated on in that layer, instead of propagating it to the
user-space application. The simple call flow eliminates a
number of overheads associated with a single write operation.
As compared to the call flow in Figure 3(b), the numerous
context switches between user-space, guest OS and the
hypervisor (as experienced in the standard PT case) are
eliminated. These are replaced by the majority of work being
done in the hypervisor, thereby reducing the context-switch
and scheduling overhead and multiple calls to page
protection by the application. Additionally, in comparison to
Figure 3(a), we see that the hypervisor-assisted model does
page protection at a lower layer (hypervisor) than the native
case (application layer) allowing for the possibility that its
performance can be even better than native performance.

PTxen can work in parallel with other techniques like
live migration [17]. Since both pieces of code are
implemented in the hypervisor and override the page fault
handler, they can be combined to coexist in the hypervisor.

B. Emulation-based: Emul

The page-tracking approach discussed above dealt with
changes at the granularity of pages. An emulation-based
technique deals with changes being maintained at the word-
level granularity.

At a high level, emulation-based approaches also depend
on a page-fault mechanism for tracking changes. Once a
page-fault is detected they operate at the granularity of a
word. They write-protect the critical data area at the
beginning. A separate unprotected mapping (e.g. via mmap)
is maintained for the CDA. When the application writes to
the protected area, the system generates a protection
violation which is then communicated to the application.
Within the signal handler, the application detects the word
that is written to, makes a copy of the changed word and then
writes to the critical data area using the alternate mapping
without unprotecting the page. In x86 architectures, the write
is emulated using the x86 ‘MOV’ instruction so the data is
written one-word at a time. At the end of the checkpoint
cycle, the application has a list of all the changed words and
can use this list to build a checkpoint. Since the list is
maintained at the word level, only the data that has really
been modified needs to be migrated to the backup, thereby
saving bandwidth and compute power.

Hypervisor

TLB flush Page fault

User

OS

Page

unprotect

375

C. Emulation-based hypervisor-assisted: Emulxen

Emulxen is the hypervisor-assisted version of the
emulation approach discussed above in Subsection B. When
the application declares its critical data area, the hypervisor
write-protects all the pages in the critical data area. Similar to
the PTxen case, the hypervisor overwrites the page fault
handler to trap all page faults locally. When the application
writes to the critical data area, the system generates a page-
fault which is trapped by the page-fault handler in the
hypervisor. The page fault handler notes the address and the
value of the dirty words and records them in a buffer
provided by the application. It then emulates the write as
with Emul. At the end of the checkpoint cycle, the
hypervisor has the full list of changed words and the values
of the changed words in the buffer in application space.

D. Scan-based hypervisor-assisted: Scanxen

The scan-based approach is motivated by live migration
in Xen [17]. Instead of protecting and unprotecting pages
explicitly, the technique is based on scanning page table’s
dirty bits to obtain a list of modified pages. When the
application declares its critical data areas, the hypervisor
keeps the critical data areas in its list of pages to track.
Whenever the application writes to a page, the hardware
tracks the write by setting the dirty bit in the page table.
However, in normal systems, the dirty bit would be reset as
soon as the page is swapped to disk. Xen supports the
concept of shadow-page tables where the guest OS uses a
copy of the page tables that is independent of the hardware
page tables. Xen propagates the changes made to the shadow
page tables to the hardware page tables and vice versa.
Scanxen uses the dirty bits in the shadow-page tables to track
the modified pages. (In contrast, PT-based and Emulation-
based do not rely on shadow-page tables, but maintain their
own dirty pages.) At the end of the checkpoint cycle,
Scanxen parses the guest OS shadow page table to determine
the set of dirty bits in the critical data area for a given
application. It builds a list of changed pages from this and
passes it to the application. For performance reasons, in our
implementation, we did not use the “log dirty bit” facility
from Xen live migration for maintaining the dirty bits, but
constructed them directly from the shadow page tables.

Note that for each checkpoint cycle, Scanxen has to walk
through the guest OS page table and access all the pages in
the critical data area. The cost of Scanxen depends on the
size of the critical data area, and not on the number of dirty
pages/words in a transaction. This can be expensive if the
critical data area buffer is large.

V. MICROBENCHMARK

In order to evaluate the performance of each approach we
built a microbenchmark. Memory-write operations have a
direct impact on the checkpoint performance; hence the
microbenchmark first allocates a critical data area and then
performs a number of memory write operations. It
transactionalizes each write or a group of writes in the CDA
by containing them between checkpoint begin and end calls.

Four key parameters were used to parameterize the
benchmarks:

• Size of the critical data area (CDA)

• Writes-per-page (WPP): Average number of write

operations on a page within a transaction.

• Pages-per-transaction (PPT): Average number of

unique pages written to in each transaction

(checkpoint cycle).

• Transaction count (Tcount): Total number of

transactions (checkpoint cycles) in the experiment.
Total size of a transaction (Tsize) is defined as the total

number of writes in a transaction which is the product of
writes-per-page (WPP) and pages-per-transaction (PPT):

Tsize = WPP*PPT.
The results in this section show the time taken for Tcount =
100000 transactions.

In this section, we assess the impact of the above
parameters on the performance of our approaches. The
evaluation is useful in understanding which approaches are
better fitted to certain types of transactions. The experiments
have been performed with Xen 4.1-unstable. The Dom0
kernel was 64-bit Linux 2.6.32-15 and the guest kernel was
paravirtualized 32-bit Linux 2.6.18-164. Both Dom0 and
guest kernels were patched with pvops kernel patches [24].

A. PT-based approaches

Figure 6 shows the performance of the two page-tracking
based approaches (PT and PTxen) with varying PPT and
WPP. Note that the three runs with different WPPs (4, 8, and
16) all have the same result for a given approach. This is to
be expected since varying the WPP for each approach has no
impact on the performance of the approach. Varying the PPT
has a direct impact on the performance of the approach. This
is because page-tracking based approaches incur an overhead
each time a page is dirtied for the first time with a transaction.
Once the page is unprotected and written to, there is no
additional cost for subsequent writes into the page. Hence
there is a linear increase in overhead with PPT. An important
result from this experiment is that PTxen shows a tenfold
improvement in performance, thereby validating the
hypervisor-assisted approach.

Figure 6: PT vs. PTxen with varying PPT

376

B. Emulation-based approaches

Figure 7 shows that the emulation-based approaches get
impacted mainly by transaction size (WPP*PPT) rather than
individual values of WPP or PPT. This is because emulation-
based approaches emulate every write into a page, be it the
first write or a subsequent write. So the performance doesn’t
depend on pages modified per transaction but more on the
total number of writes within a transaction. This has
advantages if the transaction has high PPT and low WPP. If
WPP is low, emulation-based approaches can eliminate
unnecessary page-table manipulations and have the potential
to outperform page-tracking based approaches.

Figure 7: Emul vs. Emulxen with varying Tsize

Applications with simple operations that have a small

number of writes within a transaction, such as list deletions,
are a good candidate for emulation-based approaches.

As shown in the figure, a comparison between Emul and
Emulxen shows a fourfold improvement from Emul to
Emulxen, further validating the efficacy of the hypervisor-
assisted model.

C. Emulation vs Page-tracking

As discussed earlier, emulation is good for small
transactions or transactions with small number of writes per
page. In this subsection we investigate the break-even point
between emulation and page-tracking based approaches.

Figure 8 shows the comparison between emulation-based
approaches and page-tracking based approaches. The main
aim of the experiment is to find the optimal parameter values
for the two categories of approaches. Figure 8(a) shows that
in user-space, below 5 writes-per-page (WPP), emulation
performs better than PT. Figure 8(b) shows that, for
hypervisor-assisted approaches, Emulxen performs better
than PTxen for WPP below 1.3. Beyond these two numbers,
the page-tracking based approaches have better performance.

The results show that in the user-space, five write
emulations and page faults are equivalent to a single page
protection and page fault. Compared to user-space case,
hypervisor-assisted case shows a much lower break-even
point (WPP = 1.3). This illustrates the significant overhead
of page fault handling in user space.

 (a) User level (b) hypervisor-assisted

Figure 8: Emulation vs. Page-tracking

D. Scanxen

As discussed in the earlier sections, Scanxen is mostly
dependent on the size of the critical data area. The main
overhead of Scanxen comes from scanning the page tables to
get the dirty bits.

(a) vs. User-level

(b) vs. Hypervisor-assisted

Figure 9: Scanxen performance

377

Figure 9 shows the performance of Scanxen with respect
to PT (Figure 9(a)) and PTxen (Figure 9(b)). Although most
of the Scanxen overhead comes from scanning the page-
tables, there is some impact of pages-per-transaction (PPT)
as can be seen from the positive slope of Scanxen lines in the
two figures. At the end of each transaction, Scanxen
constructs the list of dirty pages. The work involved in
building the list is proportional to the number of dirty pages

(PPT). The total cost y can be expressed with a simple linear

equation:

y = (PPT dependent cost) + static cost based on CDA.

Based on Figure 9, we find that:

y = (0.0625)*(PPT) + 2.5*(size of CDA in MB),

where the first term represents the amount of work to be
done for accumulating the list of dirty pages.

For large critical data areas (e.g., several Mbytes) the
static cost is dominant, so the first term in the equation is
negligible. On the other hand when the critical data area is
small (e.g., several tens of Kbytes) the first term has a bigger
impact on the overall cost.

The two figures show the break-even points for Scanxen
when compared to the page-tracking based approaches. As
compared to PT, Scanxen performs better with higher values
of PPT and for smaller CDAs. In hypervisor-assisted page-
tracking case (PTxen), due to the improved performance of
PTxen, Scanxen cannot outperform it in most cases, except
when the CDA is smaller (10s or 100s of Kbytes).

Although Scanxen can be better in performance for
applications with small size CDA and large PPT transactions,
the range of values for which it is better is so small that in
the practical case most applications do not fit the criteria. For
most real-world applications, PT and PTxen can easily
outperform Scanxen. In this work we will not present
additional results on Scanxen.

E. Summary

Figure 10 summarizes the performance of the various
approaches for a sample case of WPP=4. Overall, we note
that the hypervisor-assisted approaches are 4-10x better in
performance than user-level approaches.

Figure 10: Comparison of approaches

One interesting observation from the figure is that while
Emul is better than PT in the user space under virtualization
(at least for WPP=4), PTxen is better than Emulxen. This
suggests that the gains in moving page protection to
hypervisor space are especially significant, making page
tracking-based approaches with hypervisor assistance
outperform other techniques.

VI. WORKLOAD EVALUATION

To evaluate a more realistic workload, we implemented
data structures typically used in most applications [25]. We
studied two cases – (a) where each transaction had a single
operation (e.g. an insert or a delete), i.e. Operations-per-
Transaction (OPT) is 1, and (b) where multiple operations
were merged into one transaction, specifically OPT = 5.

Table 2 gives a list of the data structures implemented.
For each data structure it shows the average number of data
writes and the average number of unique pages written to in
a transaction by insert and delete operations. In the case of
OPT=1 the numbers are for a single operation and when
OPT=5 it is for five operations. In the workload experiment
10000 unique data structure operations were performed,
resulting in 10000 transactions for OPT = 1 and in 2000
transactions for OPT=5. As an example, in the case of AVL
tree data structure with OPT=1, each data structure insert
operation created on average 30.5 writes and on average 5.1
unique pages were modified. As expected, the number of
write operations increases approximately five times between
OPT=1 and OPT=5. However, the number of unique pages
touched by OPT=5 does not grow linearly with respect to
OPT=1. In fact, in most cases, the number of unique pages
touched is approximately the same. This is because the
multiple operations within the transaction may touch the
same pages several times.

Table 2: Data Structures and Operations
 OPT=1 OPT=5 Data

Structures ops Avg.

writes

Avg.

pages

Avg.

writes

Avg.

pages

insert 21.9 4.9 109.9 5.0 aa (AA-trees)

delete 20.4 6.0 102.0 8.8

avl (AVL trees) insert 30.5 5.1 152.8 5.1

bin (Binomial queue) insert 27.9 2.0 139.9 2.3

dsl insert 10.4 3.1 52.0 3.6

hashquad insert 11.3 1.0 56.9 1.6

hashsepchain insert 4 1.9 20 1.9

insert 23.5 3.0 117.8 3.0 leftheap (Leftist heap)

delete 34.0 9.2 170.0 18.5

insert 2.8 2.4 14.3 2.8 heap (binary heaps)

delete 12.5 2.7 62.7 4.1

insert 4 1.0 20 1.0 list (Linked list)

delete 1 1 5 1

insert 3 1.8 15 1.9 queue (Queues)

delete 2 1 10 1

rb (Red black tree) insert 13.7 4.6 68.5 4.9

insert 20.0 4.7 100.4 5.0 splay (Splay trees)

delete 7.7 3.0 38.8 6.7

insert 720.7 5.4 3603.9 5.5 tree (Binary search tree)

delete 1.7 1.7 8.56 4.1

Dsl=Deterministic skip list
Hashquad=Quadratic probing hash
Hashsepchain=Separate chaining hash

378

A. Performance with OPT=1

Figure 11: Workload performance

Figure 11 shows the performance of some representative
sets of data structure operations from the table. Note that
results for all data structures are not shown due to space
constraints and the fact that they were very similar to the
ones in the figure. For most operations including the queue,
list, heap, splay and aa shown in the figures, performance
improves from PT to Emul to Emulxen to PTxen with PTxen
being the best in most cases, although there are some
exceptions. Results for hashquad, bin and tree show that
Emul is more expensive than PT. This is because these
operations have a high write rate (high WPP) and a low
number of unique pages written to (low PPT) in a transaction.
As discussed earlier, page-tracking based approaches
outperform emulation-based approaches for applications
with such characteristics. A tree-insert operation has a very
high value of WPP = 720.7/5.4 = 133.4, giving the emulation
based approaches a very high overhead.

Comparing insert and delete operation for lists for Emul
and Emulxen, we observe that insert operations are more
expensive than delete operations. This is because insert
operations incur more memory writes than delete operations.
In general, the overhead of emulation based approaches is
proportional to the number of memory writes.

Figure 12: Speedup from hypervisor-assistance (OPT=1)

Figure 12 shows the speedup of hypervisor-assisted

approaches compared to their user-level counterparts.
Emulxen shows up to 4x speedup (an average speedup of 3.5
across data structures) and PTxen shows a speedup of up to
13x (an average speedup of 11.4 across all data structures).

B. Transaction aggregation (OPT=5)

As shown in Table 2, aggregating operations to create
bigger transactions increases the number of writes linearly.
However, the number of unique pages modified by the
operations remains unchanged in most cases. This is because
most of the operations modify data on the same set of pages.
This implies that aggregating operations to create bigger
transactions should benefit page-tracking based approaches,
because of their heavy dependence on PPT. Emulation-based
approaches which are independent of PPT, but dependent on

379

WPP, will have the same performance as before. In this
subsection we evaluate bigger transactions where OPT=5.

Figure 13: Data structure performance with OPT=5

As shown in Figure 13, in most cases, the user level

implementation of the page tracking based approach (PT)
surpasses the performance of emulation-based user-level
approach (Emul). This is in contrast to Figure 11, where
Emul out-performed PT in a large number of cases, showing
the effect of decreased PPT on the performance of page-
tracking based approaches. As compared to Figure 11,
graphs in Figure 13 for page-tracking based approaches
show a speedup of five times, whereas emulation based
approaches do not show any difference in performance.

Figure 14: Speedup with hypervisor assistance (OPT=5)

Figure 14 shows the speedup of hypervisor assisted

approaches over their user-level counterparts for OPT=5. As
expected, the results are similar to the case of OPT=1 shown
in Figure 12. This is because both PT and PTxen get an
improvement of 5 times with transaction aggregation,
making their relative performance same as in the case of
OPT=1. Emulxen shows a speedup of up to 4 times and
PTxen shows a speedup of up to 13 times over their user-
level counterparts.

C. Data Processing Overhead

At the end of the checkpoint cycle, the modified blocks
of critical data area need to be either stored to disk or
transferred to the backup machine over a network. Page
tracking and emulation-based techniques have to process
different amounts of data. In our experiments reported here,
we consider the case where OPT=1. Transaction aggregation,
as noted earlier, would give better performance (i.e., lower
data processing overhead) for page tracking-based
approaches.

Figure 15: Amount of data processed: Page-tracking

380

Figure 16: Amount of data processed: Emulation

Figure 15 and Figure 16 show the amount of data that

each technique handles. The amount of data processed by
page-tracking based approaches is of the order of 100s of
MB. In contrast, for emulation-based approaches in most
cases the data to be processed is less than 2MB (Note that in
case of tree-insert, the value of 56MB is too large to show in
scale.)

Typical implementations do not have the main process
handle the data processing. The job of writing to disk or
copying over to the backup is typically done by another
thread or helper process. In multi-core machines, the helper
process can run in parallel on an additional CPU core. In this
case, the main process just copies the data (dirty pages or
changed bytes) into a shared buffer. The helper process runs
in parallel without stalling the main process. In this case, the
only additional overhead incurred by the main application is
in copying the modified data to the helper process. The
helper process can either save the modified data as-is, or can
do further processing on the data (e.g. difference
computation for page-tracking based approaches, potential
data compression, encryption for security). In this work, we
focus on and evaluate the overhead incurred by the main
application (namely, the cost of a memory copy).

In the case of page-tracking based approaches, the main
application incurs the overhead of copying the modified
pages to the helper process. Since it does not keep track of
changes made within the page, it needs to copy the dirty page
as a whole to the helper. In contrast, the emulation-based
approaches keep track of modifications at the word
granularity, so the application in this case needs to copy only
the modified words to the helper.

Figure 17 shows total time spent (time for the 10,000
operations and the data copy to the helper process) by each
approach, again for the case where OPT=1. We note that in
most cases, emulation-based approaches take less than 5ms
(average < 1ms) whereas page-tracking based approaches
have a higher overhead in time ranging from 10ms to 80ms.
However, when we look at the total time metric in Figure 17,

we see that the results of Section VI.A are still valid: in
effect, PTxen has overall the best performance. More
importantly, the hypervisor-assisted approaches are
significantly better than the user-space approaches.

Figure 17: Total time for each approach

It is instructive to compare the overall improvement in

performance due to hypervisor-assistance, taking memory
copy overhead also into account. This is shown in Figure 18.
We observe that PTxen improves in performance over PT by
approximately a factor of 8, while Emulxen improves over
Emul by approximately a factor of 4. This is a little lower
than the improvements seen in Figure 12 due to the constant
overhead of memory copy. Transaction aggregation (e.g.,
OPT=5) will clearly increase the benefits of PTxen over PT,
since page reuse within a larger transaction will reduce the
amount of data copied.

Figure 18: Net speedup of hypervisor-assisted over user

space approaches

381

VII. CONCLUSION

In this paper, we discussed application-assisted
checkpointing in virtualized environments. We identified the
root cause of the performance bottleneck of application
checkpointing under virtualization. To overcome this
bottleneck, we introduced the notion of hypervisor-assisted
application checkpointing. Our approach implements key
primitives for application checkpointing within the
hypervisor. Additionally, our approach introduces the notion
of direct and secure application-to-hypervisor interaction
allowing deployment with no changes to the guest operating
system. Our techniques can also be applied to non-
virtualized environments by incorporating them into the OS
instead of the hypervisor.

We have designed and implemented a family of
application checkpointing techniques. Our techniques are
very lightweight and can be implemented with minimal
code; e.g. our prototype for the Xen hypervisor added a few
hundred lines of code totaling about 0.2% of the hypervisor
code. We have introduced emulation-based techniques that
are useful for small transactions. Page tracking approaches
with hypervisor assistance show the best result. Compared to
user-space implementations, our hypervisor-assisted
application checkpointing shows impressive performance
gains of 4x~10x based on microbenchmark results and
4x~13x based on results from our workload evaluation.

REFERENCES

[1] E.N. Elnozahy, L. Alvisi, Y-M. Wang, and D.B. Johnson, "A survey
of rollback-recovery protocols in message-passing systems", ACM
Comput. Surv., vol. 34, no. 3, pp. 375-408, 2002.

[2] Yi-Min Wang, Yennun Huang, Kiem-Phong Vo, Pe-Yu Chung, C.
Kintala, "Checkpointing and Its Applications,", Twenty-Fifth
International Symposium on Fault-Tolerant Computing (FTCS),
1995, Pasadena, CA.

[3] Plank, J.S. and Kai Li, “Libckpt: Transparent Checkpointing under
Unix'', Conference Proceedings, Usenix Winter 1995 Technical
Conference, New Orleans, LA, January, 1995.

[4] Jason Ansel, Kapil Arya, and Gene Cooperman, “DMTCP:
Transparent Checkpointing for Cluster Computations and the
Desktop” 23rd IEEE International Parallel and Distributed Processing
Symposium (IPDPS'09), Rome, Italy, May, 2009.

[5] Michael Litzkow, Todd Tannenbaum, Jim Basney, and Miron Livny,
“Checkpoint and migration of UNIX processes in the Condor
distributed processing system”. Technical Report CS-TR-199701346,
University of Wisconsin, Madison, 1997.

[6] Hua Zhong and Jason Nieh, “CRAK: Linux Checkpoint / Restart As a
Kernel Module”. Technical Report CUCS-014-01. Department of
Computer Science. Columbia University, November 2002.

[7] Oren Laadan and Jason Nieh, "Transparent Checkpoint-Restart of
Multiple Processes on Commodity Operating Systems", Proceedings

of the 2007 USENIX Annual Technical Conference, Santa Clara, CA,
June 17-22, 2007, pp. 323-336.

[8] J. Janakiraman, J. R. Santos, D. Subhraveti, and Y. Turner, “Cruz:
Application-Transparent Distributed Checkpoint- Restart on Standard
Operting Systems”. In Proceedings of the International Conference on
Dependable Systems and Networks (DSN’05), Yokohama, Japan,
June 2005.

[9] K. M. Chandy and L. Lamport, “Distributed Snapshots: Determining
Global States of Distributed Systems”. ACM Transactions on
Computer Systems, 3(1):63–75, Feb. 1985.

[10] G. Deconinck , J. Vounckx , R. Lauwereins , J. A. Peperstraete, “A
User-Triggered Checkpointing Library for Computation-Intensive
Applications”, In Proceedings of 7th IASTED-ISMM International
Conference On Parallel and Distributed Computing and Systems
(IASTED, Anaheim-Calgary-Zurich) (ISCC97).

[11] L.M. Silva and J.G. Silva, “System-Level Versus User-Defined
Checkpointing”, SRDS '98 Proceedings of the The 17th IEEE
Symposium on Reliable Distributed Systems.

[12] Junyoung Heo , Sangho Yi , Yookun Cho , Jiman Hong , Sung Y.
Shin, “Space-efficient page-level incremental checkpointing”,
Proceedings of the 2005 ACM symposium on Applied computing,
March 13-17, 2005, Santa Fe, New Mexico.

[13] Thomas C. Bressoud, “Hypervisor-based Fault-tolerance”,
Proceedings of the 15th ACM symposium on operating systems
principles, Vol. 29, No. 5. (December 1995), pp. 1-11.

[14] Kernel-based Virtual Machine (KVM) for Linux, http://www.linux-
kvm.org, Last accessed on April 12, 2011.

[15] VMware vSphere – VMware virtualization platform,
http://www.vmware.com/products/vsphere/overview.html, Last
accessed on April 12, 2011.

[16] Xen 4.1, “http://www.xen.org/files/Xen_4_1_Datasheet.pdf” Last
accessed on April 12, 2011.

[17] C. Clark et al, “Live Migration of Virtual Machines”, Proceedings of
the 2nd ACM/USENIX Symposium on Networked Systems Design
and Implementation (NSDI) 2005, pp. 273-286.

[18] L. Wang, Z. Kalbarczyk, R.K. Iyer, A. Iyengar, "Checkpointing
virtual machines against transient errors," Proceedings of the IEEE
16th International On-Line Testing Symposium (IOLTS), pp.97-102,
July 2010.

[19] Brendan Cully et al., “Remus: high availability via asynchronous
virtual machine replication”, In NSDI'08: Proceedings of the 5th
USENIX Symposium on Networked Systems Design and
Implementation (2008), pp. 161-174.

[20] Y. Tamura, “Kemari: Virtual Machine Synchronization for Fault
Tolerance using DomT”, Xen Summit 2008, Boston, MA.

[21] A.W. Appel and K. Li, “Virtual memory primitives for user
programs” ASPLOS-IV Proceedings of the fourth international
conference on Architectural support for programming languages and
operating systems, 1991.

[22] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Antfarm:Tracking processes in a virtual machine environment”, In
Proc. USENIX Annual Technical Conference, 2006.

[23] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“Geiger: Monitoring the buffer cache in a virtual machine
environment”, In Proc. ASPLOS-XII, 2006.

[24] “Xen paravirt_ops for upstream Linux kernel”,
http://wiki.xensource.com/xenwiki/XenParavirtOps, Last accessed on
April 12, 2011.

[25] Mark A. Weiss, “Data Structures and Algorithm Analysis,” Second
Edition, Addison Wesley.

382

