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Abstract

Live migration is one of the most important features of virtual-
ization technology. With regard to recent virtualization techniques,
performance of network 1/O is critical. Current network I/O virtu-
alization (e.g. Para-virtualized I/O, VMDq) has a significant per-
formance gap with native network I/O. Pass-through network de-
vices have near native performance, however, they have thus far
prevented live migration. No existing methods solve the problem
of live migration with pass-through devices perfectly.

In this paper, we propose CompSC: a solution of hardware
state migration that will enable the live migration support of pass-
through devices. We go on to apply CompSC to SR-IOV network
interface controllers. We discuss the attributes of different hardware
states in pass-through devices and migrate them with correspond-
ing techniques. Our experiments show that CompSC enables live
migration on an Intel 82599 VF with a throughput 282.66% higher
than para-virtualized devices. In addition, service downtime during
live migration is 42.9% less than para-virtualized devices.

Categories and Subject Descriptors D.4.4 [Operating Systems]:
Communications Management—Network communication; D.4.5
[Operating Systems]: Reliability—Backup procedures

General Terms Design, Performance

Keywords  Virtualization, Live migration, Pass-through device,
SR-IOV
1. Introduction

Recently, virtualized systems have been experiencing dramatic
growth. In data centers and cloud computing environments, for
example, virtualization technology largely reduces hardware and
resource costs [9, 18]. The virtual machine live migration tech-
nique [14] is considered as one of the most important features of
virtualization [13]. It not only significantly increases the manage-
ability of virtualized systems, but also enables several important
virtualization usage models like fault tolerance [15, 28].

In such an environment, not only is the performance of CPU
and memory virtualization a crucial component, but the perfor-
mance of network I/O virtualization is also of upmost importance.
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In recent works, CPU and memory virtualization have been dis-
cussed in depth [8], and the performance with recent techniques
is near native one [11, 31]. However, I/O device virtualization re-
mains a great challenge, especially on network devices. Emulated
network I/0 [30] provides a complete emulation of the existing
network interface controllers (NIC), and connects physical NICs
together via a virtual bridge. Para-virtualized (PV) network 1I/0
[3], which employs an optimized interface, has increased perfor-
mance compared to emulated network I/O. Although recent efforts
[23, 26, 29] largely improve the performance of PV network 1/O,
there still exists a significant performance gap with native network
1/0 [25, 26, 29] in addition to the burden of higher CPU overheads.
Using pass-through I/0 [7, 24], A.K.A direct I/O, a virtualized sys-
tem can directly access physical devices without interceptions from
the hypervisor, and thus is capable of providing near native perfor-
mance. Single Root I/O Virtualization (SR-IOV) [16] is a modern
specification proposed by PCI-SIG. This specification shows how
PCle devices can share a single root I/O device with several virtual
machines. With the help of SR-IOV, one hardware device is able to
provide a number of PCle virtual functions to the hypervisor. By
assigning these functions to virtual machines as pass-through de-
vices, the performance and scalability of I/O virtualization can be
considerably increased.

Nevertheless, pass-through I/O has limitations on virtual ma-
chine live migration. In pass-through I/O, the physical device is
totally controlled by the virtual machine, and its internal states are
not accessible by the hypervisor. If the internal states of the physi-
cal device are not migrated during a live migration, the device will
stop working and the driver will likely crash. Several efforts have
been made on enabling pass-through network I/O migration, such
as the bonding driver solution [32] and Network Plug-in Architec-
ture (NPA/NPIA) [2], but these methods all bypass the problem of
hardware state migration by switching to either a PV device or an
emulated device during the migration, and have similar short com-
ings.

In this paper, we propose CompSC to address the problem
of how to efficiently migrate the state of a hardware device and
enable virtual machine live migration with pass-through NICs. We
directly face and solve the challenge of hardware state migration.
With an analysis on different kinds of hardware states, CompSC
applies methods of state replay and self-emulation on pass-through
devices. With few code changes on the device driver, CompSC
achieves our objective of enabling live migration support for pass-
through devices with minimal impact on run time performance as
well as a minute time cost for hardware state migration.

We implemented CompSC on the Xen [11] platform, with the
Intel 82576 SR-IOV NIC [19] and the Intel 82599 SR-IOV NIC
[20]. In the evaluation section, we measured the performance im-
pact of our method using micro benchmarks, scp, Netperf and
SPECweb 2009 [4]. Our results show that CompSC enabled live
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migration support on an Intel 82599 VF with a throughput 282.66%
higher than PV network devices and 89.57% higher than VMDq.
We also measured the service downtime during live migration; our
solution had a 42.9% shorter downtime when compared to the PV
network device.

Implementing and deploying CompSC is easy. A line count on
code changes required by our implementation shows that CompSC
needs little coding effort. After we implemented CompSC support
on an Intel 82576 NIC, adding CompSC support on an Intel 82599
NIC only required two days time. Thus, we are convinced that
CompSC can easily be deployed on a wide range of different NICs.

The remainder of this paper is structured as follows: Section 2
introduces the related work. Section 3 discusses the methods of mi-
grating hardware states with different attributes. Section 4 describes
the design of CompSC and the structure of the system. Section 5 de-
scribes how we implement CompSC on the Xen platform with an
Intel 82576 NIC. Section 6 shows experimental results. Section 7
discusses the usage model of CompSC and we conclude in Sec-
tion 8.

2. Related work
2.1 Migration

In the early years of distributed system research, process migration
[27] was a hot topic. Process migration has many advantages, in-
cluding processing power management, resource locality and fault
resilience. However, process migration has suffered disadvantages
with regards to implementation complexity and inflexibility. With
the development of virtualization, the possibility of the live migra-
tion [14] of the whole operating system (OS) is now realizable and
has in fact become a typical solution. In the study of Chen et al.
[13], migration is considered as one of the most important features
of virtualization. There are also studies that show further benefits
of the live migration of virtual machines, including fault tolerance
[15, 28] and trusted computing [12].

Live migration of virtual machines takes the advantage of the
narrow and identical interface provided by the hypervisor. In the
study by Christopher et al. [14], the process of live migration is
divided into six stages:

1. Pre-Migration stage

. Reservation stage

. Iterative Pre-copy stage
. Stop-and-copy stage

. Commitment stage

AN L AW N

. Activation stage

Before the stop-and-copy stage, the virtual machine is running on
the source host in the usual way. After the activation stage, the
virtual machine runs on the destination host. The downtime (i.e.
the time when the virtual machine is out of service) of the process
consists of stop-and-copy and commitment stage. Downtime is one
of the most important measurements of live migration.

There have been efforts on migration of the whole OS without
virtualization as well. In a study of Michael et al. [22], issues and
the solutions thereof for migration by OSs are discussed. Since OSs
can be treated as a drivers of the whole machine, some of the issues
raised by [22] are similar to ours.

2.2 SR-IOV

SR-IOV [16] is a new specification defined by PCI-SIG. The pur-
pose of SR-IOV is to provide multiple PCI interfaces of one device
in order to fit the usage model of directly-assigned/pass-through de-
vices and provide increased performance. An SR-IOV device con-
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sists of one PF (physical function) and several VFs (virtual func-
tions). The typical usage of an SR-IOV NIC on a virtual machine
consists of using VFs as pass-through devices of virtual machines;
the PF is used as a device of device domain or privileged domain,
not only for networking, but also for VF management. On a PCI
bus, a VF looks identical to an independent PCI device. Also, in
virtual machines, pass-through VFs are equivalent to typical PCI
NICs.

In today’s cloud computing solutions, SR-IOV has been used
in several NICs. In this paper, we use Intel 82576 and Intel 82599
NICs in our experiments, each of which support SR-IOV.

2.3 Similar works and technologies

There are several efforts on the topic of live migration with pass-
through devices. In a study by Edwin et al. [32], the Linux Ethernet
Bonding Driver [1] is used. In [32], a PV network device is used
as the backup device of a pass-through device. Before the start of
a live migration, the pass-through device is hot unplugged using
an ACPI event. In this way, there is no need to worry about mi-
grating the pass-through device. This method does not require any
code changes on the virtual machine guest kernel, but has several
disadvantages:

1. It only works with Linux guests.

2. It requires an additional PV network device. The physical de-
vice must be connected to the same Ethernet switch with the
pass-through device. This may lead to additional hardware cost
and resources costs.

3. The hot unplug event introduces another service downtime in
our test. (Section 6.5)

4. After live migration, the driver clears every statistic register in
the pass-through device, rendering the statistic function inaccu-
rate or disabled.

In a similar work by Asim and Michael [21], a shadow driver is
implemented to redirect network requests to a backup device during
live migrations. Besides the flaws mentioned above, the method in
[21] requires as many as 11K LOC (lines of code) changes on both
the hypervisor and the guest kernel.

VMDq (Virtual Machine Device Queues) [5] is a technique pro-
posed by Intel. The idea of VMDq is similar to SR-IOV, as both
methods assign hardware resources to the virtual machine. In con-
trast to SR-IOV, however, VMDq also benefits from the PV net-
work device. Unlike SR-IOV, which exposes a complete device
interface to the virtual machine guest, VMDq only provides net-
work queues to the virtual machine guest. With PV techniques like
shared pages, VMDq avoids packet copying between the virtual-
ized network queue and the physical network queue. VMDq pro-
vides faster performance than PV network devices and is still able
to support live migration in a similar way. We elaborate the com-
parison of performance and downtime between VMDq and our so-
lution in Section 6.5.

Network Plug-In Architecture (NPIA/NPA) [2] is an architec-
ture raised by VMware and Intel that tries to solve the issues of
pass-through device management and live migration. Instead of
supporting all pass-through NICs, NPIA only focuses on SR-IOV
[16] NICs. NPIA designs a shell/plug-in pair inside the kernel of
the virtual machine. The shell provides a layer similar to a hardware
abstraction layer, while the plug-in implements hardware commu-
nication under the shell. The plug-in can be plugged or unplugged
during run time. To reduce the downtime during plug-in switches,
an emulated network interface is used as a backup. By unplugging
the plug-in, NPA can easily support live migration. Just like bond-
ing driver solution, NPIA uses a software interface as backup de-
vice. Compared to the bonding driver solution, NPIA may need less



time switching the pass-through device to the backup. One major
drawback is that NPIA also needs to completely rewrite the net-
work drivers, which might prevent NPA from being widely em-
ployed.

From the perspective of ReNIC [17], hardware extensions are
proposed to solve the issues of SR-IOV network device live mi-
gration. ReNIC meets similar difficulties with us, and solves them
using hardware way.

3. Approaches of hardware state migration

The core problem with live migration support of pass-through de-
vices is the migration of hardware states. The whole of the pass-
through devices are assigned to virtual machines, rendering them
inaccessible to the hypervisor. In this section, we propose methods
of solving this problem.

3.1 T/O registers migration

I/O registers are the main interface between hardware and soft-
ware. Almost every visible state of a hardware device is exposed
by various kinds of I/O registers. In modern PCI architectures,
two kinds of I/O registers are used: Programmed I/0 (PIO) and
Memory-mapped /O (MMIO). Reading/writing operations of P1IO
and MMIO are atomic, and the virtual machine will not be sus-
pended during an I/O reading or I/O writing.

I/O registers are classified into different kinds according to the
method of access. One of the most common kinds is read-write
registers. If access to a read-write register does not lead to side
effects, then the register can be simply migrated by the hypervisor.
Other kinds of registers, such as read-only and read-clear registers,
cannot be simply migrated by the hypervisor, however.

The access of certain registers may result in side effects. For
example, modifying a NIC’s TDT (Transmit descriptor tail) regis-
ter may trigger packet transmission. Without the full knowledge of
these registers, access of them by the hypervisor may cause unex-
pected behavior or device failure.

3.2 State replay

Hardware specifications describe every detail about the interface
between the device and driver, and hardware behavior. Given
knowledge of the past communications on the interface, the cur-
rent state of the hardware can easily be deduced. It is assumed
that the driver knows the past communications on the hardware-
software interface as well as the hardware specification. In most
cases, the driver is able to drive the destination hardware from an
uninitialized state into some specified state by replaying a given set
of past communications.

The idea of state replay consists of two stages: a recording stage,
where driver must record every operation of the hardware on the
source machine; and a replaying stage, where the driver reads past
operations from a list, and commits them to the destination machine
one by one.

In regards to state replay, driver complexity may be a problem.
Because recording every past communication requires so much ef-
fort, driving the destination device may also need a significant num-
ber of code changes. Fortunately, with the knowledge of devices,
many communications can be optimized. For example, the device
driver may write a register many times. If the writing operation of
the register brings no side effects, one does not need to record each
operation. Instead, one can record only the last one, because it is
only the last one that is valid in the hardware.

Another efficient optimization technique is to define operation
sets(opset). Some drivers’ implementations may consist of several
device operations. Instead of recording every step of the drivers’
work, the devices’ operations are packed into operation sets. Fig-
ure 1 illustrates this optimization. In the figure, four operations op1,
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op2, op3 and op4 are packed into one opset opsetl. With the as-
sumption that a live migration will not happen inside operation sets,
three states are safely omitted: A, B and C.

opsetl

© ©

Figure 1. Packing device operations into an operation set

The opset optimization works especially well on NICs. With
well-designed operation sets, the number of internal states of NICs
can be largely reduced. In the case of VFs on the Intel 82576
NIC, i.e. the one used in our evaluation, all initializing and send-
ing/receiving operations are packed into operation sets. The re-
maining states include only {uninitialized, up, and down} together
with a collection of setting registers. In this kind of set up, only
the latest operations on each setting register and whether or not the
interface is up need to be tracked. In addition, the code for driv-
ing the destination hardware into the state of source hardware is
significantly simplified by invoking existing initializing codes. In
Section 6.6, we list the size of hardware states and past operations
to be migrated for the Intel 82576 and Intel 82599 NICs.

Avoiding live migration inside an operation set needs a syn-
chronizing method between the device driver and the hypervisor. A
common question is whether or not this affects performance. The
answer depends on the granularity of operation sets. If the driver
makes an operation set that lasts for an extended period of time
(e.g. several seconds), one can imagine that live migration may take
a long time. Also problematic would be if the driver makes an op-
eration set that can be invoked millions of times per second. With a
set of well-defined operation sets, negative impacts on performance
can be minimized. In Section 6.4, we prove that the performance
deterioration in our implementation is negligible.

3.3 Self-emulation

Statistic registers of type read-only and read-clear commonly can-
not be migrated through the software/hardware interface. The regis-
ter that counts dropped packets in the NIC is an example. The only
way to alter the register is to try to drop a packet. This is difficult,
because to drop a packet would need cooperation with the external
network. All existing solutions [2, 21, 32] do not cover this register.
Instead, they perform device initialization after live migration, re-
set all statistic registers, and cause the statistic functions to become
inaccurate or disabled.

Statistic registers often have mathematical attributes, e.g. mono-
tonicity. After a live migration, one statistic register may have an in-
correct value; the difference between its value and the correct value
should be a constant. For example, let the count of dropped packets
be 5 before live migration. After live migration, the same register
on the destination hardware will be initialized to 0. After that, the
value of register will always be smaller than the correct value by 5.
If the value on the destination hardware is 2, the correct value will
be 7. In the case of a read-clear register, the relationship is simi-
lar, with one notable difference: only the first access to a read-clear
register will get an incorrect value after live migration.



With such a clear logic, the classic trap-and-emulation is cho-
sen. In self-emulation, every access to a read-only or read-clear
statistic register is intercepted by a self-emulation layer. In the
layer, the correct value is calculated and returned to the caller. The
self-emulation layer can be placed in any component on the access
path of the register (e.g. the driver, the hypervisor). Figure 2 shows
an example where the self-emulation layer is in the hypervisor.

Virtual Machine

Driver

Self-emu layer

Hypervisor

Device

Figure 2. An example structure of self-emulation

3.4 Summary

I/O register migration is easy to perform, but the number of hard-
ware states that support it are quite limited. State replay covers al-
most every hardware state, but demands extra code efforts in the
driver. Statistic registers are hard to migrate, but can be covered by
self-emulation. One practical approach for migration is to use the
three of them in combination: use state replay for most hardware
states, and use I/O register migration and self-emulation when pos-
sible.

We classify the states of the Intel 82576 VF as follows: configu-
rations of rings such as RDBA (Receive Descriptor Base Address),
TXDCTL (Transmit Descriptor Control) are migrated by I/O reg-
ister migration; interrupt related registers and settings inside the
Advanced Context Descriptor are migrated using state replay; and
all statistic registers are covered by self-emulation. Using the pre-
scribed methods in this way, the live migration of network devices
in our experiment runs smoothly.

4. Design of CompSC

Virtual Machine

Driver

""" g

I I

Lv_zl'oc_kf"_a'da_"f"'
I/0 reg

migration

Shared memory

P = .
| !\Self-emu Layer ,‘Hyperv:l'sor

Device

Figure 3. CompSC architecture

The architecture of CompSC is presented in Figure 3. The
driver in the virtual machine is responsible for state replay and
the hypervisor covers I/O register migration. A piece of shared
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memory between the hypervisor and the virtual machine is used
for synchronization. Two self-emulation layers are provided in the
driver and in the hypervisor.

Among the six stages of live migration [14], CompSC works
inside the stop-and-copy stage and the activation stage. The usage
of CompSC is intelligible: collecting the hardware states of the
pass-through device at the stop-and-copy stage, and restoring them
to the destination hardware at the activation stage. In addition,
while collection is completed by different components (e.g. the
hypervisor, the device driver, self-emulation layer), restoration is
finished by the device driver only.

4.1 Synchronization

From the perspective of the device driver, live migration happens in
a flash. After one context switch, the hardware suddenly turns into
an uninitialized state. If there is anything that can indicate a live
migration, it must be checked before every hardware access. If we
use the state replay method and define several operation sets, the
driver will never detect the disturbance of a live migration.

CompSC creates a shared memory area between the hypervi-
sor and the virtual machine. An rwlock and a version counter are
preserved in the memory area. The rwlock indicates the status of
migration, and the counter records the number of live migrations
that have occurred. When the stop-and-copy stage starts, the hyper-
visor tries to hold the write lock. In the activation stage, the hy-
pervisor increases the version counter and releases the write lock.
Conversely, the driver acquires the read lock before every hardware
access. Once the lock is held, the driver checks the version counter
to figure out whether a live migration has just occurred. If so, the
restoration of the device driver will be invoked. In this way, the
hardware is never accessed in an uninitialized state.

The logical meaning of the rwlock is as an indicator of who
took over the hardware device. The device driver locks the read
lock whenever it wants to access the hardware. After accessing is
finished and the device state is taken over by the hypervisor for live
migration, the driver unlocks the read lock. The hypervisor acquires
the write lock before it touches the hardware device, after which the
hardware device is taken over by the hypervisor.

We show that the cost of rwlock is relatively low. Intuitively,
the lock will not be contended with as all the lock operations in
the driver are read lock. The only costs during run time are the
memory accesses and a little bit of cache pollution. In Section 6.4,
we provide an evaluation on the costs of the rwlock.

4.2 Hardware state migration

CompSC performs the I/O register migration in a straightforward
way. The hypervisor scans the list of registers on the network
device and saves them into the shared memory area mentioned in
Section 4.1. After a live migration, the driver inside the virtual
machine is held responsible for restoration. Making as few least
code changes as possible is one of CompSC'’s driving factors. In the
design of CompSC, we try to prevent the hypervisor from having
any device-specific knowledge. The hypervisor does not know the
list of registers; it gets this list from the shared memory area, put
there by the driver during the boot process.

State replay is completed by the device driver. The operation
sets and hardware operations are protected by rwlock. Every time
before the driver releases the read lock, it stores enough information
of past operations or operation sets to achieve a successful restora-
tion. In the restoration procedure, the device drives the destination
hardware into the same state using the saved information.

The self-emulation layer can be put into the hypervisor or the
device driver. A self-emulation layer in the hypervisor will trap all
accesses to the emulated registers and return the correct value. A
self-emulation layer in the driver will process the fetched value



correct after the access as described in Section 3.3. The former
needs only the list of emulated registers and leads to fewer code
changes in the driver, but at the expense of degraded performance
due to I/O interception. The latter gains less overhead, but produces
much more code changes. CompSC provides both methods, and the
driver is free to choose either. A detailed discussion of the overhead
of I/O interception is described Section 6.2.

4.3 SR-IOV NIC Support

On an SR-IOV NIC, migration becomes slightly different. The PF
in an SR-IOV NIC provides management interfaces with the VFs.
In our environment (Intel 82576 and Intel 82599), the PF holds
a subset of VF states such as MAC addresses. In this paper, we
call them VF-in-PF states (the VF part of PF states). Some of VF-
in-PF states can be accessed by the VF driver through the PF-
VF mailbox [19] and can be migrated using state replay, but the
remaining can only be accessed through PF registers by the PF
driver. In order to cover all hardware states, CompSC also uses
the state replay method on the PF driver. The PF driver records
all hardware operations of the specified VF before migration and
commits them to the destination machine later.

5. Implementation

We used Xen [11] as the base of our implementation on the 64-bit
x86 architecture. For NICs, we used the Intel 82576 (an SR-IOV
1Gbps NIC), and the Intel 82599 (an SR-IOV 10Gbps NIC). The PF
drivers and the VF drivers of the Intel 82576 and Intel 82599 were
changed in our implementation, detailed in Section 5.1. Section 5.3
presents the self-emulation layer.

Xen provides functions in the hypervisor to access foreign guest
domains’ memory page, which allow for easy implementation of
shared pages between the hypervisor and the device driver. Details
are offered in Section 5.2.

5.1 Driver changes

In our experiment, CompSC is executed on Intel 82576 and In-
tel 82599 NICs, with corresponding VF drivers IGBVF and IXG-
BEVF, respectively. As mentioned in Section 4.1, the read lock of
the rwlock is used to protect the hardware operations and operation
sets we defined. As soon as the lock is acquired, the driver checks
the migration counter and invokes a restoration procedure if a mi-
gration is detected.

Formally, we pack igbvf_up and igbvf_down in the igbvf
driver, and ixgbe_up and ixgbevf_down in the ixgbevf driver as
operation sets. All hardware operations and operation sets are pro-
tected by the read lock. Because most device states have a copy in
the driver, the state replay needs few code changes. The restoration
procedure conducts the following tasks: device initialization, saved
register writing, and the restoration of all states using state replay.

5.2 Shared page and synchronization

Shared pages are allocated by the NIC driver. The driver allocates
several continuous pages which are structured to contain three
pieces of information:

e The rwlock and the version counter;
e The list of registers that should be saved in the migration;

e The list of counter registers that need the help of the self-
emulation layer in the hypervisor.

After initialization, the GFN (guest frame number) of the first
page is sent to the hypervisor. In our implementation, this number is
sent by PF-VF communication. For non-SR-IOV NICs, this num-
ber can be sent by a high level communication using the TCP/IP
protocol.
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When a live migration starts, memory pages are transferred until
the stop-and-copy stage [14], until the virtual machine is to be
suspended. Right before suspending, the write lock of the rwlock
is acquired by the hypervisor. In this way, the hypervisor seizes
the control of the device hardware. After the virtual machine is
suspended, the hypervisor accesses the shared pages, and saves
all registers listed in them. The remaining part of live migration
transpires on the backup machine. Before the hypervisor tries to
resume the virtual machine, saved values of read-only and read-
clear counter registers are sent to the self-emulation layer in the
hypervisor.

The first time the driver acquires the read lock, the device
restoration procedure is invoked. The driver does necessary ini-
tializations on the device and restores the state using information
collected by the state replay and I/O register migration. When all
of this is accomplished, device migration has successfully been
achieved.

5.3 Self-emulation layer

Xen hypervisor provides functions for trapping memory accesses,
and the self-emulation layer in the hypervisor is based on them.
Every time the self-emulation layer receives a request to commit
self-emulation on a list of registers, it places a mark on the page
table of the register. All further access to these registers will be
trapped and emulated. The emulation does the real MMIO and
the layer returns the calculated value to the virtual machine. The
granularity of this trapping mechanism in our implementation is
one page. On 64-bit x86 architecture, this translates to 4 KB. It
should be noted that this may lead to unnecessary trappings and
performance impacts; we elaborate on this is in Section 6.4.

5.4 Pages dirtied by DMA

The process of live migration is highly dependent on dirty page
tracking. Dirty page tracking is implemented with the help of page
tables in the newest version of Xen. However, memory access by
DMA cannot be tracked by page tables. Intel VT-d technology [7]
provides I/O page tables, but it still cannot be used to track dirty
pages.

Hardware cannot automatically mark a page as dirty after DMA
memory access, but marking the page manually is effortless. All
that is required is a memory write. In a typical NIC, hardware
accesses descriptor rings and buffers by invoking DMA. After the
hardware writes to anyone of them, an interrupt is sent to the driver
in the virtual machine guest kernel. Because the driver knows all
changes on the descriptor rings and buffers, it simply performs a
series of dummy writes (read a byte and write it back) to mark the
pages as dirty.

This method misses a few packets that have already been pro-
cessed by the hardware but have yet to be processed by the driver.
This may lead to packet duplication or missing. Fortunately, the
amount of such packets is small enough that connections of reliable
protocols like TCP connections will not be affected. Section 6.3
presents the details of these duplicated or missed packets.

5.5 Descriptor ring

During our implementation, we came across an issue with both In-
tel 82576 VF and Intel 82599 VF. The head registers of descriptor
rings (either RX or TX) are read-only. Their values are owned by
hardware, and writing any value except for O is not allowed (writing
0 is an initialization). Consequently, head registers should be re-
stored using state replay. However, committing state replay on this
register is not that easy. The only way of increasing head registers
is trying to send/receive a packet. By putting dummy descriptors
in the rings, altering head registers does not need cooperation with
external network, but it costs thousands of MMIO writings.



One method of solving this is resetting everything in the rings.
By freeing buffers in the rings and resetting the rings to be empty,
the driver will work well with the device. But this method needs
tens or hundreds of memory allocations and freeings. The time cost
associated with this method may be a problem, especially when the
device has a large ring.

Another idea to handle the head registers is shifting. Instead of
restoring the value of head registers, we shifts the ring itself. During
the restoration procedure, the driver shifts the RX and TX rings,
and makes sure the position of each original head is at index O.
After that, the driver needs only to write a O on the head registers
to make the rings work. In addition to this, the driver must save the
offsets between the original rings and the shifted rings. Every time
the head/tail registers or rings are accessed by the driver, the offsets
are used to make sure the access is completed correctly.

In CompSC, we use the method of shifting. Shifting introduces
additional operations to access to indices/rings, and thus consumes
more CPU time in the driver. Section 6.4 measures this perfor-
mance impact.

5.6 Implementation complexity

The CompSC needs modifications in the network driver. Among
the common concerns about the practicality of deployment, the
complexity of device code changes is the most critical. In Table 1,
we depict the number of line code changes in our implementation
on different components. The synchronization mechanism is com-
mon to every network driver capable of live migration. The number
of common code changes is just 153 lines. In the IGBVF driver,
only 344 lines of codes are added or modified, and in the IXGBEVF
driver only 303 lines are added or modified. Even the CompSC ar-
chitecture itself has a small number of code changes. 808 lines of
code changes were committed in either the Xen hypervisor or Xen
tools.

We claim that one can easily patch an existing device driver
into a CompSC supported one. During our implementation, we first
completed the CompSC support on Intel 82576 NIC and related
experiments. Further efforts to add the CompSC support on Intel
82599 NIC only cost us two days. As a result, CompSC is easy and
practical to deploy.

Table 1. Lines of code changes in the implementation

Line of code
Xen hypervisor 362
Xen tools 446
VF driver(common) 153
IGBVF driver 344
IGB driver 215
IXGBEVF driver 303
IXGBE driver 233

6. Evaluation

In this section, we present the results of our experimental data that
compare a system equipped with our implementation of CompSC
to the original system (without CompSC); a system with PV net-
work device; a system with the bonding driver solution; and fi-
nally a system using the VMDq technique. We first present a mi-
cro benchmark to measure the performance impact of the self-
emulation layer in the hypervisor. In Section 6.3 we show our mea-
surements of the number of duplicated or missed packet due to
the DMA dirty page. With scp, Netperf and SPECweb2009 bench-
marks, Section 6.4 presents a comparison of the run time perfor-
mance between several situations including the original environ-
ment and our implementation. Section 6.5 illustrates the migration
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process using a timeline figure comparing CompSC, a PV network
device, the VMDq technique, and the bonding driver solution. Fi-
nally, Section 6.6 lists the size of hardware states to migrate.

6.1 Benchmarks and environment

Our target application is virtualized web servers. As a result, in our
evaluation, we focus on the throughput and the overall performance
as web servers. We use the Netperf benchmark, perform file trans-
ferring using scp to measure the throughput of virtual machines,
and use SPECweb2009 to evaluate web server performance.

The evaluation uses the following environment: two equivalent
servers equipped with Intel Core i5 670 CPU (3.47 GHz, 4 cores),
4 GB memory, 1 TB hard disk, an Intel 82576 and an Intel 82599
NIC; one client machine for the SPECweb2009 client, running an
Intel Core i3 540 CPU (3.07 GHz, 4 cores), 4 GB memory, 500 GB
hard disk, one Intel 82578DC NIC and one Intel 82598 NIC. These
three machines are connected using a 1 Gb Ethernet switch and a
10 Gb Ethernet switch. The virtual machine uses 4 virtual CPUs, 3
GB memory, and one VF of Intel 82576 NIC or Intel 82599 NIC,
and is virtualized in HVM (Hardware-assisted Virtual Machine).
The virtual machine also uses a PV network device in the tests with
PV device.

6.2 Micro benchmark for self-emulation

In Section 3.2 we presented the idea of self-emulation, and dis-
covered that the self-emulation approach has a trade-off between
accuracy and performance. In this section, we measured the per-
formance loss due to self-emulation. In our test, we accessed one
of the counter registers 10,000 times. Using TSC register, we mea-
sured the total cost of CPU cycles and calculate its average. We ran
our test in both the direct-access and intercepted scenarios. Table 2
contains the results.

Table 2. Micro benchmark for MMIO cost
MMIO direct | MMIO intercept

3911 cycles 11860 cycles

The results of our self-emulation test show that MMIO with
interception needs an additional 7,949 cycles for VMEnter/VMExit
and context switches. For low access frequencies, this overhead
is negligible, but for high access frequencies, the overhead may
become problematic. Next, we measure the access frequency of
statistic registers on different workloads.

Table 3. Access rate of statistic registers

Time | RX bytes | TX bytes | MMIO
Netperf 60.02 s 54.60 G 1.19G 4.50/s
SPECweb | 8015s 855G | 294.68 G 4.50/s

Table 3 shows the access frequency of statistic registers. From
these results, it can be seen that the frequency of statistic regis-
ter access was a constant: 4.5 accesses, no matter which task was
been executed, and no matter which of either RX or TX was heav-
ier. A subsequent code check on the Linux kernel uncovered this
behavior. The IGBVF driver used a watchdog with a 0.5 Hz fre-
quency to observe the statistic registers, and the access frequency
is expected to be a constant. At such a low frequency, the overhead
of self-emulation is roughly 10.30 ps/s. With the consideration of
cache and TLB, the overhead may be slightly more, but it can still
be considered negligible.



6.3 Duplicated and missed packet due to unmarked dirty
page
In Section 5.4, we presented the idea of marking pages dirtied by
DMA, and claimed that the solution may cause packet loss and
packet duplication. In this section, we measured the number of
duplicated and missed packets under different workloads. A busy
CPU leads to longer time in suspension, and a busy NIC increases
the number of packets received/transmitted during migration. A
straight-forward prediction is that the number of duplicated and
missed packets may become larger while both the CPU and NIC
are busy. In our measurements, the workload of scp and SPECweb
were used, and the scenario when there is no workload is also
considered.

Table 4. Duplicated and missed packet counts during live migra-
tion, using Intel 82576

Dup | Miss
No workload 0 0
scp 0 0
SPECweb 0 3

The results in Table 4 show that our method worked perfectly
both scenarios when there was no workload and also in scp; no
packet loss or duplication occurred in either case. On the SPECweb
workload, only 3 packets were lost, however, these abnormal be-
haviors did not break the TCP connection, and thus the service was
kept alive during the migration.

6.4 Performance with workloads

In this section, the run time performance of CompSC is measured
and compared to a bare system (without CompSC). CompSC adds a
synchronization mechanism between the hypervisor and the driver,
the performance impact of which was a vital concern to the design
strategy of our solution. Our method of handling descriptor rings as
described in Section 5.5 also has performance impact at run time.
The self-emulation layer in the hypervisor also has performance
overhead. Although in the test outlined in Section 6.2 concluded
the measurable overhead is small, we still consider this factor
in more detail this section. In Section 5.3 we described how the
self-emulation layer in the hypervisor may perform unnecessary
interceptions; because the layer is optional and only enabled after
migration, we measured both cases with and without the layer
enabled.

The first test ran a benchmark of Netperf and an scp workload
with a CD image file specweb2009. iso of size 491.72 MB. In this
test we measure the throughputs of the workload in three situations:
original IGBVF driver (VF orig), IGBVF driver with CompSC
(VF+comp), and IGBVF driver with CompSC and with the self-
emulation layer enabled (VF+comp+int). Figure 4 illustrates the
results. In the figure, we see that the throughput of three test cases
were almost the same in the two different workloads. The CPU
utilization in the figure shows that the VF+comp and VF+comp+int
scenarios consume almost the same amount of CPU resources as
the VF orig case. The only thing notable in the figure is that the
throughput of scp on VF+comp+int was slightly less than that on
VF orig and VF+comp. On the Netperf benchmark, the network
was the bottleneck of the whole system while on the scp workload,
it is the CPU that was the bottleneck. A CPU utilization near 100
percent shows a CPU bottleneck of a single-threaded workload.
When the self-emulation layer in the hypervisor was enabled, more
CPU resources get consumed and thus this scenario had a slightly
lower performance compared to others.
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Figure 5. Good requests by SPECweb 2009 on Intel 82576

SPECweb 2009 is our real-world benchmark. In our evalua-
tion, we configured and ran SPECweb 2009 with different pres-
sures on the server in the virtual machine. We invoked the test
with five different configurations: with 50, 100, 150, 200, and 250
concurrent sessions respectively. Tests with these configurations
were run under three cases: using the original IGBVF driver (VF
orig), the IGBVF driver with CompSC (VF+comp), and the IG-
BVF driver with CompSC and with the self-emulation layer en-
abled (VF+comp-+int).

SPECweb 2009 classifies the requests based on response time
into three types: good ones, tolerable ones, and failed ones. The
good ones are requests which have a quick response, while the
tolerable ones have a long but tolerable response. Failed ones have
an intolerable response time or no response at all. In our test, we
collected the number of good requests and present them in Figure 5.

The number of good requests increased in a linear fashion with
the number of sessions, until we met a bottleneck at 250 sessions.
To understand this bottleneck clearly, we also represent the average
response time of requests in Figure 6. The average response times
were comparable when the number of sessions was less than 250.
On the test with 250 sessions, the response time grew by almost
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2/3 compared to previous sessions, which clearly indicates that the
server was in a heavy workload.
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Figure 7. Performance and CPU utilization by SPECweb 2009
with 250 sessions on Intel 82576

Before reaching the bottleneck, no obvious differences present
themselves in the three scenarios depicted in Figure 5 and Figure 6.
This convinces us that the performance impact of our method under
light workloads can be ignored. When the test approaches 250
sessions, VF+comp generated 3.74% fewer good requests than VF
orig, and VF+comp+int generated 6.80% fewer good requests (in
Figure 5). In regards to the measurement of average response time,
VF+comp had a 0.75% higher response time and VF+comp+int
had 2.88% higher response time when compared to VF orig (in
Figure 6). To figure out why this is the case, we collected detailed
performance data and CPU utilization results with the 250 sessions
case in Figure 7.

The total requests handled by the server in the three scenarios
were on the same horizontal line in Figure 7. The reason why
VF+comp and VF+comp+int have fewer good requests is due to
longer response time, in which case some of the requests were
classified into tolerable requests. In other words, both the VF+comp
and VF+comp+int cases had the same service capability, but had
slightly longer response times. In the meantime, VF+comp and
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VF+comp+int consumed 0.59% and 0.64% more CPU than VF
orig, respectively; this impact can also be considered as very small.
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In order to evaluate the performance impact of CompSC on
more challenging scenarios, we ran the Netperf tests, scp tests and
SPECweb 2009 tests on an Intel 82599 VF with CompSC. As Fig-
ure 8 shows, the Intel 82599 VF was capable of more than 9.4 Gbps
throughput on the Netperf tests, and CompSC had no detectable im-
pact on throughput. In the scp tests, the Intel 82599 VF produced
almost the same throughput as the Intel 82576 VF because the CPU
was the bottleneck in scp tests. In the SPECweb2009 tests, the per-
formance of the Intel 82599 VF was also comparable to the perfor-
mance of the Intel 82576 VF. We can clearly see the bottleneck was
reached at 250 sessions, and CompSC slightly degraded response
time in a similar fashion to the Intel 82576 VF.

6.5 Service down time

In this section, we graphically illustrate the whole process of live
migration. We treated the server as live if it had a positive through-
put. To fulfill the throughput, we ran the Netperf benchmark dur-
ing our test. The throughput on the Netperf client machine was
recorded as data. In order to shorten migration time (mostly de-
cided by the amount of memory), we modified the configuration of
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the virtual machine. In this test, the virtual machine was equipped
with 1 GB of memory.

Figure 11 presents the throughput and CPU utilization during
a live migration when using CompSC on an Intel 82576 VF, and
Figure 12 presents the results with the PV device using an Intel
82576 PF as physical device. In the two figures, we first notice
that the service downtime of CompSC was about 0.9s while the
downtime of the PV device was about 1.4s. CompSC had a 35.7%
shorter and better service downtime. It can also be seen that in PV
device test, service was down shortly before the 1.4s downtime (On
about 20.6s) and CPU utilization reached as high as 327%. The
reason for this behavior is the suspension process of PV-on-HVM
(Para-virtualization on Hardware-assisted Virtual Machine). The
suspension on PV-on-HVM demanded the cooperation of drivers
in the virtual machine. This cooperation consumed many CPU
resources and caused a small period of service down. If we focus
on CPU utilization, we notice that the CPU% lines on both figures
have the same shape, and the line on Figure 12 is higher than
the line on Figure 11. This fits our expectation. The pass-through
device consumed less CPU resources than the PV device, which is
the precise usage of pass-through devices.

We also have a test with regards to the bonding driver solution.
Due to limitations of current Xen implementations, we only have
a test for the bonding driver on a VF from the Intel 82576 and an
emulated E1000 device as backup. Figure 13 shows the results of
this test. The bonding driver solution had an extra service down at
about 3s. Because the switching of the bonding driver took several
milliseconds and caused packets to be lost. The shape of CPU
utilization line is similar to that of the CompSC and PV device, but
the throughput was much less. The performance of the emulated
device was not as good as either the PV device or the pass-through
device. In the figure, it can also be seen that the service downtime
of bonding driver solution was about 1.2s.

In order to assess the performance benefit of SR-IOV, we evalu-
ated the migration process of an Intel 82599 VF. Figure 14 depicts
the results of our test on an Intel 82599 VF with CompSC solu-
tion. The shape of the CPU line and throughput line are almost the
same as in Figure 11. Sometimes the throughput collapsed for a lit-
tle while (less than 0.2s), because Dom0 and the guest were sharing
the physical CPU, and a throughput of 10 Gbps was very challeng-
ing for our environment. The test results of PV device are shown in
Figure 15. We used the PF Intel 82599 PF as the physical device of
the PV device, however, the PV device could only achieve about 2.5
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Gbps throughput. The Intel 82599 VF with CompSC achieved as
much as a 282.66% higher throughput than the PV device. The im-
pact on throughput occurred when the CPU utilization was higher
than 200% (16s to 22s). In terms of downtime, the result these tests
are similar to that of the Intel 82576 situations. The downtime of
CompSC on the Intel 82599 VF was about 0.8s, which was 42.9%
less than the downtime of the PV device, i.e. about 1.4s.

The test results of VMDq are presented in Figure 16. While
VMDq support in Xen is currently abandoned, we found VMDq
support on earlier version of Xen. Thus, in our VMDq tests, we
used Xen 3.0 and Linux 2.6.18.8 with a PV guest virtual machine.
We used an Intel 82598 NIC as the physical device of VMDq,
because the Intel 82599 NIC is not supported in Linux 2.6.18.8.
The migration time and downtime in the test was shorter than
CompSC and PV scenarios due to the PV guest. The PV guest had
advantages on migration, since the kernel of PV guest is modified
for virtualization. The core issue of VMDq relates to throughput,
which was about 5 Gbps. Although VMDq had larger throughput
than the PV scenario, the throughput of the Intel 82599 VF with
CompSC was 89.57% higher than VMDq.

6.6 Size of total hardware states and past communications

In Section 3.2, we mentioned that state replay may record large
amounts of past communications, and introduced several optimiza-
tions in response. In this section, we list the amount of hardware
states and past communications needed in our implementation with
the Intel 82576 and Intel 82599 NIC.

Table 5. Size of total hardware states in our implementation

Size (bytes)
States in IGBVF driver 88
VF-in-PF states in IGB driver 848
States in IXGBEVF driver 104
VF-in-PF states in IXGBE driver 326

According to Table 5, the total number of hardware states to be
transferred during the migration is less than 1 kilobyte in both the
IGBVF and IXGBEVF drivers. In a typical network environment,
the network throughput is at least 100 Mbps. Consequently, the
transmission cost of hardware states can safely be ignored.

7. Discussion

In this paper, we focus on the pass-through NIC, but in the design of
CompSC, we focus on every pass-through device. While CompSC
can be used for pass-through devices other than those in this work,
not all devices might perform as this paper describes. One aspect
that needs to be considered is the number of hardware states, which
varies among different devices. In our evaluation, the number of
hardware states of NIC is small, but some devices have tremen-
dously large state capacities, such as graphic cards with large video
memory. In modern graphic cards, video memory larger than 256
MB is quite common. With such devices, the transmission costs for
device state is quite large and can have a large impact on the service
downtime or even be a bottleneck. One potential solution would be
to shut down some features of graphic cards such as 3D rendering
before migration to reduce the total amount of the hardware states.
Another aspect to be acknowledged is the cost for state replay.
Since state replay only commits on invisible states, devices with
many invisible states may have higher costs for state replay. Ac-
tually, IGBVF/IXGBEVF are examples of this phenomenon. Be-
cause the ring head register is invisible, the state replay may cost
hundreds of MMIO. In our implementation, we use a method of
shifting to avoid this large cost. The cost for state replay depends
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Figure 13. Bonding driver: Throughput and CPU utilization during live migration

on the hardware design of devices. Luckily, for most devices the
cost for state replay is small because it is generally just the cost of
device initialization.

CompSC can also be implemented on other hypervisors; no as-
sumptions are made in this regard in the design of CompSC. The re-
quirements for hypervisor of CompSC are: (1) Live migration sup-
port (2) Pass-through device support (3) Foreign page access. These
features are common in today’s hypervisors such as KVM [10] and
VMware ESX [6]. Hopefully, the CompSC support of these hyper-
visors only need less than 1K LOC just like our implementation on
Xen.

CompSC needs both driver changes and hypervisor changes.
While this is somewhat of a limitation on deployment, CompSC
does not need changes on virtual machine guest kernel, and the
new driver is completely compatible with the original hypervisor
and non-virtualized environments. In this respect, deployment is
easy since one can safely use the new (CompSC) driver in old en-
vironments. Once the CompSC support of the hypervisor is set-
tled, live migration is enabled. In terms of deployment, the bonding
driver solution needs hypervisor changes, guest kernel changes, and
a new guest driver. The convenience of the bonding driver solution
is based on the fact that the Linux kernel already has the bonding
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Figure 16. VMDq on Intel 82598: Throughput and CPU utilization during live migration

driver; the solution is hard to deploy on other OS such as Windows,
however. NPIA needs hypervisor changes and a set of plug-in bi-
naries. Compared to CompSC, every device NPIA supports has a
brand new driver (plug-in binary). Furthermore, the new driver can
only be used in NPIA environments. The VMDq solution is even
worse: it needs hypervisor changes, guest kernel changes, and a pair
of new drivers (A.K.A front-end driver and back-end driver). Over-
all, CompSC has deployment and usage advantages that outweigh
these other solutions.
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8. Conclusion

In this paper, we present CompSC: a solution of hardware state
migration that achieves live migration support on pass-through net-
work devices. With a synchronization mechanism between the de-
vice driver and the hypervisor, hardware is taken over by the hyper-
visor and hardware state saving is performed. Right after migration,
the device driver restores the hardware state on the destination ma-
chine using knowledge of the device and saved states. Furthermore,
a self-emulation layer inside the hypervisor is provided to ensure
the accuracy of statistic registers.



With CompSC, the Intel 82599 VF enabled live migration sup-
port with a throughput 282.66% higher than PV network devices
and 89.57% higher than VMDq. During live migration, the ser-
vice downtime was 42.9% shorter than that of PV network devices.
The performance impact of CompSC during run time is negligible.
Lastly, CompSC needs minimal effort to implement and can easily
be deployed on different NICs.
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