Samsara: Efficient Deterministic Replay in Multiprocessor

Environments with Hardware Virtualization Extensions

Shiru Ren, Le Tan, Chunqi Li, Zhen Xiao, and Weijia Song

Table of Contents

@ Introduction]
@ Background & Motivation]

Record & Replay Memory
Interleaving with HAV

®
®
®

Samsara Overview]
Evaluation]
Conclusion]

Peking University and Cornell University

Non-determinism
Multiprocessor architectures are inherently non-deterministic

The lack of reproducibility complicates software debugging, security analysis, and fault tolerance

Deterministic Replay
Gives computer users the ability to travel backward in time, recreating past states and events

Checkpoint + Record all non-deterministic events

r——~—=-=-=" \
Replay Execute same instruction stream | :
Checkpoint # | Final State'
Phase I |
rtr 1 Tt .
Inject events in logged points = =0 0==—m==—===—=
D Replay log ‘ II
(- ~-——-=-°° \
[Instruction stream
Recording Final State

I
|n|t|a| State # |
Phase |
t 1 1 Pt
Non-determinism Events
(e.g. user / network inputs, interrupts...)

Deterministic Replay for Multi-processor

Deterministic replay for single processor is relatively mature and well-developed

Challenge on the multi-processor systems: Memory Access Interleaving

PO P1 PO P1

o W(A=0)\ o W(A=0)\
® R(A=0

® WA=1)

® RA=0

/o R(A)=0
® RA=1 ¢ WA=1

(a) (b)

Hardware-based schemes

Use special hardware support for recording memory access interleaving

Redesign the cache coherence protocol

Node
i
Interrupt DMA v
/_@ |_L°$_B“m .
Input E \
Log Buffer T =
08 Processor Cache -| (R DMA Races o
Pipeline Checkpoint Loplnnde || oy
) Log Buffer 3
Memory =
’VLLIS h L1_D$| Banks 1]
L2 Cache g
/O Bridge
[nReg | [out Reg | g |
Memo . System Interconnect
Cache Ty DMA Y
ey Checkpoint | | I @
Coherence Races Directory by B:I:’e.r ~ Topology

= i
1N

Network
Interface

The FDR System [ISCA ‘03]

Hardware-based schemes
Use special hardware support for recording memory access interleaving

Redesign the cache coherence protocol

Issues
Increase the complexity of the circuits, impractical for use in real systems

Huge space overhead which limits the duration of the recorded interval

Software-only schemes
Modify OS, compiler, runtime libraries or VMM
Virtualization-based approaches -- CREW protocol

CREW: Concurrent-Read & Exclusive-Write

PO P1

PO:23>P1:5 \

24@ Y=0
PO:24>P1:6 6@ b=y+1
P1:5 > P0:25 5@ X=0

PO:25->P1:8

S D) ST c=X+Y

Software-only schemes
Modify OS, compiler, runtime libraries or VMM
Virtualization-based approaches -- CREW protocol

CREW: Concurrent-Read & Exclusive-Write

Issues
Each memory access operation must be checked for logging before execution
Serious performance degradation (about 10x compared to the native execution)

Huge log sizes (approximately 1 MB/processor/second)

To summarize
Software-only schemes are inefficient without proper hardware support

No commodity processor with dedicated hardware-based record and replay capability

To summarize

Software-only schemes are inefficient without proper hardware support

No commodity processor with dedicated hardware-based record and replay capability

Our goal

To implement a software approach that can take full advantages of the latest hardware

features in commodity processors to record and replay memory access interleaving

efficiently without introducing any hardware modifications.

Hardware-assisted virtualization (HAV)
(e.g., Intel® Virtualization Technology)

11

Point-to-point logging approach (CREW protocol)

Record dependences between pairs of instructions ——
Large number of memory access detections (VM exit) —
PO P1

:

\
<]
~N

$

Huge logs

Excessive overhead

12

Point-to-point logging approach (CREW protocol)

Record dependences between pairs of instructions — Huge logs
Large number of memory access detections (VM exit) m— Excessive overhead
PO P1 PO P1
Chunk-based Strategy i
Restrict processors’ execution into a series t : ? .

Atomicity

\ g

of chunks N
d chunk & d 7 é A : :
Record chunk size & commit order /
Chunk execution must satisfy: I [’I 0
\ S A " '_'_'_':

Serializability

Serializability: Conflict detection, Chunk commit

Atomicity: Copy-on-write (COW), Rollback

PO
J_ Chunk Start
() LD (A)

cCow @ ST(A)

Truncation Reason:

C1 @ ST(A) I/O Instruction
COW o ST (B)
Truncation Reason:

Chunk Size Limit (‘Z_Y’I_L_J_r]_lf_(_:_qmp_l_qte
RLLELLELLLERRLLEL - R set { A }
. Confllct : : :
: Detection E : Weset {A, B} : C3
o, Commit ST .., A
R-set { A B}
W-set {B}

C2

=

Al

e E

LD (D)

ST (D)

R-set {D}
W-set {D}

Squash & Rollback

Re-execution

Chunk Execution
Chunk Commit
Memory Operation

Chunk Name

14

Obtain R&W-set Efficiently via HAV Extensions
VM-based approaches: numerous VM exits (hardware page protection)
Accessed and Dirty Flags of EPT (Extended Page Tables)

Our approach: a simple EPT traversal

Obtain R&W-set Efficiently via HAV Extensions

VM-based approaches: numerous VM exits (hardware page protection)
Accessed and Dirty Flags of EPT (Extended Page Tables)

Our approach: a simple EPT traversal

PO PO
e W(b) Wio)
{5) R (b)
o) W)

o R(a):é o
o .

R (c)

---------- l-—) a EPT traversal

Partial traversal of EPT
EPT uses a hierarchical, tree-based design
If the accessed flag of one internal entry is O, then the accessed flags of all entries in its subtrees
are guaranteed to be O

Locality of reference (just need to traverse a tiny part of EPT)

Accessed: 1

A 4

Accessed: 0

Accessed: 1

A\ 4

Accessed: 1

A 4

Accessed: 0

Observations

Chunk commit is time-consuming

Wait for lock

Write-back operation

Obtain
R&W-set

I

Broadcast

Updates
Lock

A4

Subsequent
Chunk

PO

MM

Chunk
Complete

Wait for
Lock

Detect
Conflict

x Write-back
=4 Updates

18

PO
Decentralized Three-Phase Commit Protocol

Move this out of the synchronized block

Support parallel commit while ensuring

Chunk
_ Complete
serializability Obtain —§7%
R&W-set g Wait for
é Lock
Three phases: % Insert into committing list

f

1‘ Detect
Lock Conflict

i

Write-back
Updates

Synchronization phase =B Update Chunk Info

Pre-commit phase Broadcast

Updates

Commit phase

Check Committing List

Subsequent

Chunk e

Replay Memory Interleaving

Guarantee all chunks will be properly re-built and executed in the original order
Design goal: maintain the same parallelism as the recoding phase
1. Truncate a chunk at the recorded timestamp
2. Ensure that all preceding chunks have been committed successfully before the current

chunk starts

Virtual Machine Virtual Machine
Windows Linux
Applications Applications
Windows Linux
EMU EMU Log Record
Q Q Daemon

DMA DMA
Controller Controller
Recorder Recorder

Record and Replay Component

Memory Interleaving Recorder

Linux
Applications

x86 with Hardware-assisted Virtualization

Peking University and Cornell University

21

Experimental Setup
4-core Intel Core i7-4790 processor, 12GB memory, 1TB Hard Drive
Host: Ubuntu 12.04 with Linux kernel version 3.11.0 and Qemu-1.2.2

Guest: Ubuntu 14.04 with Linux kernel version 3.13.1

Workloads
Computation intensive applications
PARSEC
SPLASH-2
|/O intensive applications
kernel-build

pbzip2

Log Size
Samsara generates log at an average rate of 0.0027 MB/core/s and 0.0031 MB/core/s for
recoding two and four cores

Reduces the log file size by 98.6% compared to the previous software-only schemes

0.01

0009 | 1 core

B 2 cores
0.008 |

4 cores

0.007 |

0.006 |

0.005

Log Size (MB/core/s)

0.004 |

0.003

0.002

0.001

Log size produced by Samsara during recording (compressed with gzip).

The proportion of each type of non-deterministic events
The size of the chunk commit order log is practically negligible compared with other non-
deterministic events

9.36% with two cores and 19.31% with four cores on average

0.2

M chunk commit order

M Synchronous Events & Compound Events
0.15 Asynchronous
0.1

Log Size (MB/core/s)

124 124 124 124 124 124 124 124 124 124
o) 4 i~ < - A A G, * <,
O Y T T
S %, > <% 2 < B3 %, @ o)

g 2 L Rl iy L3
] > >N (®) (3) N S
o F % © < Z,
& % % %
2 2
%

The proportion of each type of nondeterministic events in a log file (without compression).

Recording Overhead Compared to Native Execution

Compare the performance to native execution
2.3X and 4.1X for recording these workloads on two and four cores

Previous software-only approaches cause about 10X with two cores

12

W logging, 1 core
10

W logging, 2 cores

logging, 4 caores

Morrmalized Overhead
[=3]

Recording overhead compared to the native execution.

24

We made the first attempt to leverage HAV extensions to achieve an efficient software-based replay

system on commodity multiprocessors.

We abandon the inefficient CREW protocol and instead use a chunk-based strategy.

We avoid all memory access detections, and obtain each chunk’s read-set and write-set by

retrieving the accessed and the dirty flags of the EPT.

We propose a decentralized three-phase commit protocol which significantly reduces the

performance overhead by allowing chunk commits in parallel while still ensuring serializability.

‘lThanks

renshiru@pku.edu.cn

[

Peking University and Cornell University

	Samsara: Efficient Deterministic Replay in Multiprocessor Environments with Hardware Virtualization Extensions
	Table of Contents
	Introduction
	Introduction
	Introduction
	Background & Motivation
	Background & Motivation
	Background & Motivation
	Background & Motivation
	Background & Motivation
	Background & Motivation
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Samsara Overview
	Evaluation
	Evaluation
	Evaluation
	Evaluation
	Conclusion
	幻灯片编号 27

