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Non-determinism
Multiprocessor architectures are inherently non-deterministic

The lack of reproducibility complicates software debugging, security analysis, and fault tolerance



Deterministic Replay
Gives computer users the ability to travel backward in time, recreating past states and events
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Deterministic Replay for Multi-processor

Deterministic replay for single processor is relatively mature and well-developed

Challenge on the multi-processor systems: Memory Access Interleaving
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Hardware-based schemes

Use special hardware support for recording memory access interleaving

Redesign the cache coherence protocol
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Hardware-based schemes
Use special hardware support for recording memory access interleaving

Redesign the cache coherence protocol

Issues
Increase the complexity of the circuits, impractical for use in real systems

Huge space overhead which limits the duration of the recorded interval



Software-only schemes
Modify OS, compiler, runtime libraries or VMM
Virtualization-based approaches -- CREW protocol

CREW: Concurrent-Read & Exclusive-Write
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Software-only schemes
Modify OS, compiler, runtime libraries or VMM
Virtualization-based approaches -- CREW protocol

CREW: Concurrent-Read & Exclusive-Write

Issues
Each memory access operation must be checked for logging before execution
Serious performance degradation (about 10x compared to the native execution)

Huge log sizes (approximately 1 MB/processor/second)



To summarize
Software-only schemes are inefficient without proper hardware support

No commodity processor with dedicated hardware-based record and replay capability



To summarize

Software-only schemes are inefficient without proper hardware support

No commodity processor with dedicated hardware-based record and replay capability

Our goal

To implement a software approach that can take full advantages of the latest hardware

features in commodity processors to record and replay memory access interleaving

efficiently without introducing any hardware modifications.

Hardware-assisted virtualization (HAV)
(e.g., Intel® Virtualization Technology)
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Point-to-point logging approach (CREW protocol)

Record dependences between pairs of instructions ——
Large number of memory access detections (VM exit) —
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Point-to-point logging approach (CREW protocol)

Record dependences between pairs of instructions — Huge logs
Large number of memory access detections (VM exit) m— Excessive overhead
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Serializability: Conflict detection, Chunk commit

Atomicity: Copy-on-write (COW), Rollback
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Obtain R&W-set Efficiently via HAV Extensions
VM-based approaches: numerous VM exits (hardware page protection)
Accessed and Dirty Flags of EPT (Extended Page Tables)

Our approach: a simple EPT traversal



Obtain R&W-set Efficiently via HAV Extensions

VM-based approaches: numerous VM exits (hardware page protection)
Accessed and Dirty Flags of EPT (Extended Page Tables)

Our approach: a simple EPT traversal
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Partial traversal of EPT
EPT uses a hierarchical, tree-based design
If the accessed flag of one internal entry is O, then the accessed flags of all entries in its subtrees
are guaranteed to be O

Locality of reference (just need to traverse a tiny part of EPT)
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Observations

Chunk commit is time-consuming

Wait for lock

Write-back operation
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PO
Decentralized Three-Phase Commit Protocol

Move this out of the synchronized block

Support parallel commit while ensuring
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Replay Memory Interleaving

Guarantee all chunks will be properly re-built and executed in the original order
Design goal: maintain the same parallelism as the recoding phase
1. Truncate a chunk at the recorded timestamp
2. Ensure that all preceding chunks have been committed successfully before the current

chunk starts



Virtual Machine Virtual Machine
Windows Linux
Applications Applications
Windows Linux
EMU EMU Log Record
Q Q Daemon

DMA DMA
Controller Controller
Recorder Recorder

Record and Replay Component

Memory Interleaving Recorder

Linux
Applications

x86 with Hardware-assisted Virtualization
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Experimental Setup
4-core Intel Core i7-4790 processor, 12GB memory, 1TB Hard Drive
Host: Ubuntu 12.04 with Linux kernel version 3.11.0 and Qemu-1.2.2

Guest: Ubuntu 14.04 with Linux kernel version 3.13.1

Workloads
Computation intensive applications
PARSEC
SPLASH-2
|/O intensive applications
kernel-build

pbzip2



Log Size
Samsara generates log at an average rate of 0.0027 MB/core/s and 0.0031 MB/core/s for
recoding two and four cores

Reduces the log file size by 98.6% compared to the previous software-only schemes
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The proportion of each type of non-deterministic events
The size of the chunk commit order log is practically negligible compared with other non-
deterministic events

9.36% with two cores and 19.31% with four cores on average
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Recording Overhead Compared to Native Execution

Compare the performance to native execution
2.3X and 4.1X for recording these workloads on two and four cores

Previous software-only approaches cause about 10X with two cores
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We made the first attempt to leverage HAV extensions to achieve an efficient software-based replay

system on commodity multiprocessors.

We abandon the inefficient CREW protocol and instead use a chunk-based strategy.

We avoid all memory access detections, and obtain each chunk’s read-set and write-set by

retrieving the accessed and the dirty flags of the EPT.

We propose a decentralized three-phase commit protocol which significantly reduces the

performance overhead by allowing chunk commits in parallel while still ensuring serializability.
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