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Background

M Training distributed deep learning (DDL) jobs usually requires powerful and expensive

GPUs, and it gradually becomes infeasible to fit them into a private cluster

M Public cloud service providers, e.g., Azure and Alibaba Cloud, have built GPU clusters

to gain monetary benefits by training DDL jobs for users

B Two metrics related to user experiences:
» job completion time

» training fee
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Challenge

B As a typical online bin-packing problem, job scheduling is known to be NP-hard

B The mainstream solutions divide this problem into two easier sub-tasks, i.e., ordering task and

placement task

B Heuiristic rules:
» First-in-first-out
» Shortest-job-first
» First-fit
» Best-fit
» Load-balance
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B \We analyze and abstract existing ordering and placement methods as a dual-agent structure,

and employ reinforcement learning to learn the two agent policies

B \Why cooperative dual-agent?

» The potential cooperation between the two task policies can be exploited to further improve the
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B Why using RL to optimize the dual-agent?

() FreeGPU [N} ResNet Seq2Seq  [J VGG

> SyStem uncertai nty: Figure 1: Illustrative example of uncertain performance fluc-
tuation caused by future arrived and co-located jobs in a

machine equipped with four GPUs during four timesteps.

® when and what kind of DDL jobs will come.

® uncertain performance fluctuation caused by future arrived and co-located jobs.

» RL can naturally adapt to the uncertainty by exploration and exploitation
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M Can the exploration in Gaussian distribution space in native continuous-space RL well tackle the
system uncertainty?

» We propose a Random Walk Gaussian Process, which can well model the performance similarity and

uncertain performance fluctuation
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Markov Decision Process Formulation
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Figure 2: The Dec-MDP formulation of DDL job scheduling. v" Free resources, utilization ratio

Job j2 (in purple) is scheduled at ¢;;2 by the ordering agent, _
: : B Reward:
and is placed on machines mo and m3 by the placement agent.

n-z rf"" — (1= @a(Ci xnfP) | N

<p>

BEBEH REHE



Model Overview
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Figure 3: The overall architecture of our proposed DAS model. In this example, four jobs submitted by users are ready to be
scheduled on the cluster with eight machines, where each machine is equipped with four GPUs.
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Ordering Agent with Communication

B Ordering agent
» assigning priority scores for jobs

» the job with a higher priority indicates that it will gain more benefits if scheduled first

M Infer the most proper scheduling order under the current cluster state

» deliver cluster state to the ordering agent

» machine number is varying and may be large S7 =4- f(gé) +(1-9) - s/

~ squeeze-and-communicate ¢ = AvgPool(S°) § = c(W3[S) @ f(s°)] +b3))
B Position-aware and self-attentive job ordering

» jobs arrive at the pending list according to their submission order, which is a key factor for job
scheduling

» Transformer encoder
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Placement Agent with Random Walk Gaussian Process
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® Placement agent
» assigning affinity scores

» a higher a;;, denotes that job j; is more suitable to be placed on machine m,,

B Two intuitive placement principles

1. job instances should first be placed on the machines with similar performances to ensure that no

machine could become the performance bottleneck

2. should be aware of the uncertain future performance fluctuation caused by resource contention

,EE*EE =2 %1@#@ <9>



Sy »
N e 75

PEKING UNIVERSITY

Placement Agent with Random Walk Gaussian Process

® Principle 1: Random walk kernel in non-Euclidean space

» abstract the cluster as a graph G; at timestep ¢t
® node: machine

® edge: communication topology

» a random walker selects the next visited machine node according to transition matrix P (i)

» a larger P(i),; denotes that machines m; and m; are more similar for placing job j; and there is a

higher probability to transit from m;, to m,
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Placement Agent with Random Walk Gaussian Process
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M Principle 2: Random walk kernel in Gaussian Process

» give a posterior distribution rather than point estimation

» random walk kernel is symmetric and positive semi-definite V|

> uncertainty from topological view krw (G1, Gz) = ;
ik=1

o0

DR

£=0

ik
M Posterior distribution of RWGP

ps = kpw (86, X) [krw (X, X)) + 021]_1 Y; (13)

26 = krw (SS,S¢) — krw (S, X¢) [krw (X, X)) + UZI]_I krw (X, S€).
(14)

B Action Sampling

Ay ~ N(pi, Z%).
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Optimization with MAPPO

B Temporal-Difference Error
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B Policy gradient

LActor

~(£LPC + AH(np))
LPC =R, [min (ratio, clip(ratio, 1 — €, 1 + e))Bt]

ratio = [E; [eXp (108(”9) - 108(ﬂ90,d))] ’

log(ngs) = —, [(@ - )? + Nlog(2)] - log(|/])
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Experiments
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M Simulator: a well-established simulation environment used in many DDL scheduling research

work

B Dataset; Alibaba GPU Cluster Trace

B Baselines:
» heuristic-based schedulers

» meta-heuristic-based schedulers

» RL-based scheduler

B Evaluation metrics

% r!ct Ni 'fee
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Table 1: Performance comparisons with baselines and ablation study for four variants of our method. The JCT is in minutes
and Fee is in dollars. The best and second best are in bold and underline, respectively. Please note that the metrics are presented
at job level, and even marginal improvements can lead to significant benefits regarding all the clusters running on the cloud.

. Small Medium Large Average
Algorithms
JCT Fee JCT Fee JCT Fee JCT Fee
FIFO-FirstFit 720.228 51.685 171.282 51.684 110316 51.219 | 333.942 51.529
FIFO-Load Balance 715.776 ~ 51.559 162.102 50.900 112.290 51.112 | 330.054 51.189
Heuristic-based DRF-FirstFit 862.242 52.055 164.778 51.354 109.098 52.325 | 378.708 51.911
DRF-Load Balance 852984 51.798 173.106 51.908 113.556 51.924 | 379.884 51877
Tetris 813.480 51.668 176.688 52.567 113.364 53.109 | 367.842 52.448
Meta-heuristic-based MALO 708.858 51.675 182.862 51.129 111.660 51.233 | 334.458 51.346
MOSA 759.222  51.783 173.400 51.998 109.422 51933 | 347.346 51.905
RL-based DL* 721.083 51.166 160.100 50970 110.215 51.080 | 330.468 51.072
RIFLING 717.576 ~ 51.160 176.676  50.980 109.872 51.039 | 334.708 51.060
DA 697.732 51.106 173.354 51.097 108.821 51.025 | 326.636 51.076
Ours DA+MC 680.861 50.952 163.456 50.941 109.854 50.701 | 318.057 50.865
DA+RWGP 686.894 51.029 157.071 50.856 107.896 50.439 | 317.287 50.684
DA+MC+RWGP (DAS) 638.046 50.484 155.003 50.019 108.700 50.354 | 300.584 50.286
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Parameter Tuning

B Two important parameters in the

ordering and placement agents:
» the number of attention head h

» the length of historical data 7

® The JCT and Fee of our model

consistently outperform RIFLING
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(a) Average JCT by varying h. (b) Average Fee by varying h.
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Figure 5: Performance tuning by varying h and 7. Our method
consistently outperforms RIFLING on both metrics.
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Case Study

® The communication mechanism is able to convey
the cluster state to the ordering agent, so as to

make proper ordering decisions

®m The RWGP is able to detect the performance
similarities of machines and the potential resource

contention
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(b) Job placement decision.
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(c) Job scheduling decisions in four steps.

Figure 6: Case study on the Small cluster to show the effec-
tiveness of the ordering and placement policies of our model.
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Conclusion

mA distributed deep learning job scheduler is responsible for reducing both
job completion time and training cost.

mExisting heuristic and reinforcement learning based methods either ignore
or cannot handle the system uncertainty and policy cooperation.

mContributions:
» We propose a dual-agent structure to learn the ordering and placement policies.
»We design an ordering agent with efficient communication mechanism.

» For the placement agent, we propose a novel Random Walk Gaussian Process to
model the performance similarities and performance uncertainty from topological
view.
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