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Background

System failures exist inevitably, e.g. power loss, OS halting.

Expensive to mask failures transparently.

Redundant software or redundant hardware component
e.g. HP non-stop server

Laborious effort on application development.

Applications based on fault tolerant protocols
e.g. Google Chubby based on Paxos

Peking University IEEE IPDPS ’10



Introduction Memory Tracking Memory Mapping Evaluation

Hypervisor-Based Fault Tolerance
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Hypervisor-Based Fault Tolerance
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physical hosts.

The execution of the primary VM is divided into epochs (e.g.
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The hypervisor records modified pages in each epoch.
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Modified pages are mapped into Domain0’s address space.
(Expensive)

Checkpoint is sent to the backup VM.

Peking University IEEE IPDPS ’10



Introduction Memory Tracking Memory Mapping Evaluation

Objective

Efficient memory tracking mechanism

Read fault reduction
Write fault prediction

Efficient memory mapping machanism

Software superpage
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Outline

1 Introduction

2 Memory Tracking
Current Approach
Read Fault Reduction
Write Fault Prediction

3 Memory Mapping

4 Evaluation
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Shadow Page Table (SPT)

OS: Page Table

Guest OS: GPT Hypervisor: P2M

Virtual Address Pseudo-Physical Address Machine Address

Virtual Address Machine Address

Virtualization: virtual, pseudo-physical and machine address
space; Traditional OS: virtual and machine address space.
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Shadow Page Table (SPT)

Hypervisor: SPT

Guest OS: GPT Hypervisor: P2M

Virtual Address Pseudo-Physical Address Machine Address

Virtual Address Machine Address

Virtualization: virtual, pseudo-physical and machine address
space; Traditional OS: virtual and machine address space.

SPT is created on demand according to the guest page table
(GPT) and pseudo-physical to machine table (P2M).
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Current Memory Tracking Approach

Hypervisor: SPT

Guest OS: GPT Hypervisor: P2M

Virtual Address Pseudo-Physical Address Machine Address

Virtual Address Machine Address

Developed for live migration, it is not suitable for frequent
checkpointing in hypervisor-based fault tolerance.
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Current Memory Tracking Approach

Guest OS: GPT Hypervisor: P2M

Virtual Address Pseudo-Physical Address Machine Address

Virtual Address Machine Address

Developed for live migration, it is not suitable for frequent
checkpointing in hypervisor-based fault tolerance.

At the beginning of each epoch, all SPTs are destroyed.
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Current Memory Tracking Approach

Hypervisor: SPT

Guest OS: GPT Hypervisor: P2M

Virtual Address Pseudo-Physical Address Machine Address

Virtual Address Machine Address

Developed for live migration, it is not suitable for frequent
checkpointing in hypervisor-based fault tolerance.

At the beginning of each epoch, all SPTs are destroyed.

During the epoch, any memory access induces a page fault
and write accesses can be identified.
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Observation: Shadow Entry Reuse
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Shadow Entry Reuse: If a shadow entry is accessed in an
epoch, it will likely be accessed in future epochs.

Reuse Degree: The percentage of unique shadow entries
required to account for a given percentage of page accesses.

Peking University IEEE IPDPS ’10



Introduction Memory Tracking Memory Mapping Evaluation Current Approach Read Fault Reduction Write Fault Prediction

Our Approach: Scanning Shadow Entries

Shadow Page Table
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Our approach: Preserve SPTs and revoke their write
permission.

During the epoch, the marker records which parts have dirty
pages.

At the end of the epoch, shadow entries are selectively
checked based on the marker.

During checking, we record the dirty pages and revoke write
permission for the next epoch.
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Observation: Spatial Locality
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Spatial Locality: The
shadow entries with rw set
are inclined to cluster
together.
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Observation: History Similarity
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History Similarity: For a
particular SPT, the behavior
of spatial locality is inclined
to be similar among
adjacent epochs.
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Our Approach: Predicting Write Accesses

When a write fault occurs, the adjacent shadow entries will
likely be referenced for write accesses. (Spatial Locality)

How many shadow entries are predicted is decided by the
historical ave strides. (History Similarity)

his stride = his stride ∗ α+ ave stride ∗ (1− α)

1/3 his stride backwards and his stride afterwards shadow
entries are predicted (heuristically).

When a shadow entry is predicted, we set rw in advance with
Prediction bit tagged.

At the end of each epoch, we rectify wrong predictions by
checking Prediction and Dirty bits.
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Observation: Memory Mapping is Expensive

At the end of each epoch, modified pages are mapped into
Domain0’s address space.

Memory mapping and umapping are expensive, resulting in
the primary VM being stalled too long.

Observation: Because of locality, the mappings can be reused,
without mapping and umapping frequently.
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Our Approach: Software Superpage
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L1 page tables are allocated to point to the primary VM’s
entire memory pages, but limited L2 page table entries.

L1 page tables are installed into these limited L2 page table
entries on demand.

LRU algorithm is employed to decide which L1 page tables are
actually pointed to.
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Evaluation Setup

Two HP ProLiant DL180 servers with 12G memory and two
quad-core CPUs, connected via switched Gigabit Ethernet.

The primary VM: 2G memory and one vCPU.

Workloads: SPEC Int, SPEC Fp, SPEC Jbb and SPEC Web.

Epoch length: 20 msec as default.

Improving two sources of overhead.

Memory tracking mechanism: read fault reduction and write
fault prediction.
Memory mapping mechanism: software superpage.
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Memory Tracking: Performance Improvement
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Memory Tracking: Page Faults Reduction
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From left to right, current approach, our read fault reduction and
write fault prediction.
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Software Superpage: Mapping Hit Ratio.

We allocate a fixed 64M virtual address space in Dom0 to map all
the memory pages of the primary VM (2G).

Table: Software superpage mapping hit ratio.

Workload CINT CFP SPECjbb SPECweb

Hit Ratio 97.27% 97.25% 97.80% 79.45%
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Overall Improvement
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Conclusion

Memory tracking and memory mapping are two sources of
overhead in hypervisor-based fault tolerance.

Read fault reduction eliminates those unnecessary page faults
from read accesses.

Write fault prediction reduces page faults by predicting the
pages that will likely be modified.

Software superpage improves memory mapping with limited
virtual address space.
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Future Work

We will evaluate our experiments with different epochs and
different number of vCPUs.

Port our approach to nested page table (another memory
virtualization mechanism).

Improve our source code and contribute it to Xen open source
project.
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Q & A

Thank You!
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