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Motivation

e Auto scaling is a key property of cloud
computing
— Flash crowd, fail over, etc.

e Two decisions need to be made

— when and where to start a VM for an application?
— how can the VMs and the applications inside be
brought up as quickly as possible?

e Unfortunately, start up latency can be really
long!



Why Slow?

> VM Start

» Virtual machine allocation, operating system
startup and application initialization.

» Complicated application: Weblogic, JBoss, etc.

> VM Resume

» Virtual machine allocation and loading virtual
machine state.

» VM state is large: Amazon EC2 allows high
throughput VM instances with tens of Gigabytes
of memory.



Startup Latency

200

—e— Start ’

- | —=— Hesume .
—&— Twinkle

¥

1 2 3 4 5 B 7 5]
VM Memory Size (GB)

—h
on
=

Startup Latency (s)
o
L

Startup latency of RUBIS service within JBoss which
runs on Dell PowerEdge blade servers with Intel 5620
CPU, 24 GB RAM and10K RPM SAS disks.



Our Approach

> VM instances are started from an initialized
VM snapshot.

» Working set estimation, demand prediction
and free page avoidance accelerate VM
startup.
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Architecture
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A cloud data center employing fast restart mechanism.
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» Execution Snapshot
> VM Image

Elastic Computing
Servers

» Stateless VMs
Dispatcher

» Policy Decision

» Request Dispatching
Storage

> Database, S3, etc.
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Overview

» Step 1: VMM allocates a new VM container.
» Step 2: Working set of the guest OS is loaded.
» Step 3: The guest OS starts running.

» Step 4: The other state of the VM is lazily
fetched.



Working Set Estimation

» We load working set of the operating system
before starting the VM.

» Post-checkpoint tracking mechanism is employed
to estimate working set.

» How to track the working set?

» After checkpoint, we mark all the nested page table
entries as “non-present”.

» The pages inducing page faults are recognized as
working set.

» We adopt an iterative and heuristic method to decide
tracking window.



Demand Prediction
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» Demand prediction fetches the pages that are most
possibly needed in parallel with the VM execution.

» Our approach follows the principle of memory access
locality.

» The address space of the newly started VM is divided into
segments, each of which contains N consecutive pages.

» |If the number of demand-page-traps exceeds P pages in
one segment, we fetch the remaining pages in advance.



Free Page Avoidance

» For a typical Internet service, the majority of
memory consumption results from dealing
with client requests.

» The memory requirement of the service itself
is small.
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File System Snapshot

» Each Internet service holds one prepared VM
snapshot: an execution snapshot and a root
file system image.

» Modifications to the root file system are saved
on the local storage using copy-on-write.

> The local state can be discarded when the VM
instances shut down later.
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Example of a cloud data center employing fast restart mechanism.
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Example of a cloud data center employing fast restart mechanism.



Experiments

> Performance Eval

uation (SPEC CPU2006)

» Startup latency: the time to fetch the working set

> Invalid execution
CPU time when t

» Remote page fau
performance of t

ratio that is the percentage of
ne VM is inactive

t: mostly determines the

he newly started VM

» Application Evaluation (RUBIS and TPC-W)
» Flash crowds with single and multiple applications

> Failure over



Performance Evaluation

» We run the six programs from SPEC CPU2006
in separate VMs for two minutes, and then
take a snapshot of each VM.

» We continue the execution of the VM from
the snapshot with three approaches:

» Xen’s native resume as baseline
» Demand paging without optimization
» Twinkle startup



Startup Latency of SPEC CPU2006

astar 1.49 (1.8%)
libquantum 0.35 (0.4%)
mcf 11.89 (14.4%)
omnetpp 1.31 (1.6%)
perlbench 2.25 (2.7%)

xalancbmk 3.24 (3.9%)



Execution Time of SPEC CPU2006

astar 600.95 639.56(6.4%) 608.31(1.2%)
libquantum 830.57 863.28(3.9%) 841.57(1.3%)
mcf 455.84 818.93(79.7%) 470.15(3.1%)
omnetpp 383.99 459.74(19.7%) 399.75.04(4.1%)
perlbench 411.30 575.04(39.8%) 460.40(11.2%)

xalancbmk 283.27 425.34(50.2%) 325.71(11.5%)



VM Invalid Execution Ratio
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Individual Contribution
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The count of remote page faults under different combinations of techniques.



Application Evaluation

» Policy: Provision more VMs for the service
when response time exceeds 2000 msec.

» Three approaches to start a new VM:
> Xen VM Start: Start a VM from scratch

> Xen VM Resume: Resume a VM with Xen’s resume
functionality

» Twinkle Fast Start: Our approach



Response Time of RUBIS service during
a flash crowd
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Response Time of RUBIS and TPC-W
during a flash crowd

(a) Xen VM Start
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Throughput of RUBIS in case of a
failure over

(a) Xen VM Start
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Related Work

» Auto Scaling

> Rightscale, Scalr and EC2 focus on policy decision
of when and where to start/stop virtual machines.

» Twinkle provides a fast resource provisioning
mechanism which executes these decisions more
efficiently once they are made.



Related Work

» Virtual Machine Replication

> Collective aims at a low-bandwidth network and

begins execution after all the memory has been
loaded.

» Potemkin spawns virtual machines with memory
copy-on-write techniques and does not fetch
memory pages via a network environment.

» SnowFlock enables cloning virtual machines on-
the-fly for computation intensive applications and
needs guest os intrusion.
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Conclusion

e Auto scaling is essential to cloud computing
service

 \We presented Twinkie, a fast resource

provisioning system without noticeable
performance overhead
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