Twinkle: A Fast Resource Provisioning
Mechanism for Internet Services

Professor Zhen Xiao
Dept. of Computer Science
Peking University
Xiaozhen@pku.edu.cn

Joint work with Jun Zhu and Zhefu Jiang

Motivation

e Auto scaling is a key property of cloud
computing
— Flash crowd, fail over, etc.

e Two decisions need to be made

— when and where to start a VM for an application?
— how can the VMs and the applications inside be
brought up as quickly as possible?

e Unfortunately, start up latency can be really
long!

Why Slow?

> VM Start

» Virtual machine allocation, operating system
startup and application initialization.

» Complicated application: Weblogic, JBoss, etc.

> VM Resume

» Virtual machine allocation and loading virtual
machine state.

» VM state is large: Amazon EC2 allows high
throughput VM instances with tens of Gigabytes
of memory.

Startup Latency

200

—e— Start ’

- | —=— Hesume .
—&— Twinkle

¥

1 2 3 4 5 B 7 5]
VM Memory Size (GB)

—h
on
=

Startup Latency (s)
o
L

Startup latency of RUBIS service within JBoss which
runs on Dell PowerEdge blade servers with Intel 5620
CPU, 24 GB RAM and10K RPM SAS disks.

Our Approach

> VM instances are started from an initialized
VM snapshot.

» Working set estimation, demand prediction
and free page avoidance accelerate VM
startup.

Outline

Architecture
Three optimizations
File system snapshot
Experiments
Related work

Conclusion

Architecture

4 l JL l{JIient Requests N

Dispatcher

|
J

| Elastic Computing
Servers

—_——— _ -

I
Im Stor:
R ——

A cloud data center employing fast restart mechanism.

>

>

>

>

Image Storage
» Execution Snapshot
> VM Image

Elastic Computing
Servers

» Stateless VMs
Dispatcher

» Policy Decision

» Request Dispatching
Storage

> Database, S3, etc.

Outline

Architecture

Three optimizations
File system snapshot
Experiments

Related work

Conclusion

Overview

» Step 1: VMM allocates a new VM container.
» Step 2: Working set of the guest OS is loaded.
» Step 3: The guest OS starts running.

» Step 4: The other state of the VM is lazily
fetched.

Working Set Estimation

» We load working set of the operating system
before starting the VM.

» Post-checkpoint tracking mechanism is employed
to estimate working set.

» How to track the working set?

» After checkpoint, we mark all the nested page table
entries as “non-present”.

» The pages inducing page faults are recognized as
working set.

» We adopt an iterative and heuristic method to decide
tracking window.

Demand Prediction

" — N —— R — " R — S —— ———
SegmentA SepmentB SeomentC SegmentD SepmentE

. [Fetched Pages Unfetched Pages

» Demand prediction fetches the pages that are most
possibly needed in parallel with the VM execution.

» Our approach follows the principle of memory access
locality.

» The address space of the newly started VM is divided into
segments, each of which contains N consecutive pages.

» |If the number of demand-page-traps exceeds P pages in
one segment, we fetch the remaining pages in advance.

Free Page Avoidance

» For a typical Internet service, the majority of
memory consumption results from dealing
with client requests.

» The memory requirement of the service itself
is small.

Outline

Architecture

Three optimizations
File system snapshot
Experiments

Related work
Conclusion

File System Snapshot

» Each Internet service holds one prepared VM
snapshot: an execution snapshot and a root
file system image.

» Modifications to the root file system are saved
on the local storage using copy-on-write.

> The local state can be discarded when the VM
instances shut down later.

Architecture

Client Requests

L — — — — — — — — — e — — — — — — — — — — —

| Nervers

)

I

I

I —_——
|

I I [RUBIS] | Elastic Computing
I

I

I

I

I

Example of a cloud data center employing fast restart mechanism.

Outline

Architecture

Three optimizations
File system snapshot
Experiments
Related work

Conclusion

Architecture

Client Requests

L — — — — — — — — — e — — — — — — — — — — —

| Nervers

)

I

I

I —_——
|

I I [RUBIS] | Elastic Computing
I

I

I

I

I

Example of a cloud data center employing fast restart mechanism.

Experiments

> Performance Eval

uation (SPEC CPU2006)

» Startup latency: the time to fetch the working set

> Invalid execution
CPU time when t

» Remote page fau
performance of t

ratio that is the percentage of
ne VM is inactive

t: mostly determines the

he newly started VM

» Application Evaluation (RUBIS and TPC-W)
» Flash crowds with single and multiple applications

> Failure over

Performance Evaluation

» We run the six programs from SPEC CPU2006
in separate VMs for two minutes, and then
take a snapshot of each VM.

» We continue the execution of the VM from
the snapshot with three approaches:

» Xen’s native resume as baseline
» Demand paging without optimization
» Twinkle startup

Startup Latency of SPEC CPU2006

astar 1.49 (1.8%)
libquantum 0.35 (0.4%)
mcf 11.89 (14.4%)
omnetpp 1.31 (1.6%)
perlbench 2.25 (2.7%)

xalancbmk 3.24 (3.9%)

Execution Time of SPEC CPU2006

astar 600.95 639.56(6.4%) 608.31(1.2%)
libquantum 830.57 863.28(3.9%) 841.57(1.3%)
mcf 455.84 818.93(79.7%) 470.15(3.1%)
omnetpp 383.99 459.74(19.7%) 399.75.04(4.1%)
perlbench 411.30 575.04(39.8%) 460.40(11.2%)

xalancbmk 283.27 425.34(50.2%) 325.71(11.5%)

VM Invalid Execution Ratio

100%F——

10%¢

1%

1009%F

10%

1%

(c) mef

e

500

Executmn Time (seconds)

f) xalancbmk

1000

..
by

250

Executmn Time (seconds)

500

(a) astar {b) libquantum
100% ' ' 100% '
2
o
o
5
310% 10%
&
LLl
=
1% , , 1% ,
0 250 500 750 0 500 1000
Execution Time (seconds) Execution Time (seconds)
(d) omnetpp (e) perlbench
100% ' 100% ' '
.%
o
% Qs L as L
g 10% 10%
L
O
: | |
1% 19%
0 250 500 0 250 500 750
Execution Time (seconds) Execution Time (seconds)
Baseline Demand Paging

Twinkle

Individual Contribution

250——T—T—T T T—T T T T T T T T T T T—TT T 1T T
— none(“n”
free page avoidance(“f”)
200 demand prediction(“d”) 1
working set estimation(“w”

Count of Remote Fetch Fault (x 1000)
[#)]
o

150 |
100} | .
0 IﬁIH WIHI+ | [ul Iﬁ

n f fdfidw n f fdfdw n f fdfdw n f fdfdw n f fdfdw n f fdfdw
astar libquantum mcf omnetpp perlbench xalancbmk

The count of remote page faults under different combinations of techniques.

Application Evaluation

» Policy: Provision more VMs for the service
when response time exceeds 2000 msec.

» Three approaches to start a new VM:
> Xen VM Start: Start a VM from scratch

> Xen VM Resume: Resume a VM with Xen’s resume
functionality

» Twinkle Fast Start: Our approach

Response Time of RUBIS service during
a flash crowd

(a) Xen VM Start

&

——RUBIS

VM Start Point

I

(]

Response Time (s)

(=]

0 100 200 300 400 500 600 700 800 900

=]

I

(]

Response Time (s)

o

100 200 300 400 500 600 700 800 900
(c) Twinkle Fast Start

=

=]

VM Start Point —— RUBIS

-

Response Time (s)

o

=

100 200 200 tliﬂﬂ . 500 600 700 800 900
Timeline (s)

Response Time of RUBIS and TPC-W
during a flash crowd

(a) Xen VM Start

o

'[——RUBIS
e TPC-W

I
T

(]

Response Time (s)

0 100 200 300 400 500 600 700 800 900
(b) Xen VM Resume

EE I I I T . .

2 —— RUBIS

= af —+=TPC-W

@D

i

S 2f

ﬂ_ .

% . . i 1.1 | | 0 Co .4 . :]
T 0 100 200 300 400 500 600 700 800 900

(c) Twinkle Fast Start

o

N

(]

Response Time (s)

0 100 200 300 dllﬂﬂ ‘ 500 600 700 800 900
Timeline (s)

Throughput of RUBIS in case of a
failure over

(a) Xen VM Start

2
=)

Failurs,l,w Over —— satisfied requests
—— failed requests

]

Throughput (regs/s)
o
j=

T200 —150 -100 =50 0 50 100 150 200 250

(b) Xen VM Resume

=]
=2

I Failur‘é Cwver I

2

Throughput (reqs/s)
4]
=

-200 -150 -100 -50 0 5 100 150 200 250
(c) Twinkle Fast Start

' Failure Over

Q
=]

=]

Throughput (regs/s)
)]
=

-200 -150 -100 =0 0 50 100 150 200 250
Timeline (s)

Outline

Architecture

Three optimizations
File system snapshot
Experiments
Related work

Conclusion

Related Work

» Auto Scaling

> Rightscale, Scalr and EC2 focus on policy decision
of when and where to start/stop virtual machines.

» Twinkle provides a fast resource provisioning
mechanism which executes these decisions more
efficiently once they are made.

Related Work

» Virtual Machine Replication

> Collective aims at a low-bandwidth network and

begins execution after all the memory has been
loaded.

» Potemkin spawns virtual machines with memory
copy-on-write techniques and does not fetch
memory pages via a network environment.

» SnowFlock enables cloning virtual machines on-
the-fly for computation intensive applications and
needs guest os intrusion.

Outline

Architecture

Three optimizations
File system snapshot
Experiments

Related work
Conclusion

Conclusion

e Auto scaling is essential to cloud computing
service

 \We presented Twinkie, a fast resource

provisioning system without noticeable
performance overhead

Tblornr Lvsr

