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Nondeterminism

 Multiprocessor architectures are inherently nondeterministic

 The lack of reproducibility complicates software debugging, security analysis, and fault tolerance

Introduction

3



Peking University and Cornell University

Deterministic Replay

 Gives computer users the ability to travel backward in time, recreating past states and events

 Checkpoint + record all non-deterministic events

Checkpoint
Execute same instruction stream

Inject events in logged points

Initial State
Instruction stream

Final State

Non-determinism Events
(e.g. user / network inputs, interrupts… )
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Replay log

Recording
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Deterministic Replay for Multi-processor

 Deterministic replay for single processor is relatively mature and well-developed

 Challenge on the multi-processor systems: Memory Access Interleaving

Introduction
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Hardware-based schemes 

 Use special hardware support for recording memory access interleaving

 Redesign the cache coherence protocol

The FDR System [ISCA ’03]
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Issues

 Increases the complexity of the circuits, impractical for use in real systems

 Huge space overhead which limits the duration of the recorded interval
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Software-only schemes 

 Modify OS, compiler, runtime libraries or VMM

 Virtualization-based approaches—CREW protocol

 CREW: Concurrent-Read & Exclusive-Write
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Issues

 Each memory access operation must be checked for logging 

 Serious performance degradation (about 10x compared to the native execution)

 Huge log size (approximately 1 MB/processor/second)
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To summarize

 Software-only schemes are inefficient without proper hardware support

 No commodity processor with dedicated hardware-based record and replay capability

10

Background & Motivation



Peking University and Cornell University

Our goal
 To implement a software approach that can take full advantages of the latest hardware

features in commodity processors to record and replay memory access interleaving

efficiently without introducing any hardware modifications.

 Hardware-assisted virtualization (HAV)
(e.g., Intel® Virtualization Technology)
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Point-to-point logging approach (CREW protocol)

 Record dependences between pairs of instructions                                      Huge logs

 Large number of memory access detections (VM exit)                                 Excessive overhead
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Chunk-based Strategy

 Restrict processors’ execution into a series 

of chunks

 Record chunk size & commit order

 Chunk execution must satisfy:

 Atomicity

 Serializability
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P0 P1
. . . . . .
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 Serializability: Conflict detection, Chunk commit

 Atomicity: Copy-on-write (COW), Rollback
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Obtain R&W-set Efficiently via HAV Extensions 

 VM-based approaches: numerous VM exits (hardware page protection)

 Accessed and Dirty Flags of EPT (Extended Page Tables)

 Our approach: a simple EPT traversal
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Partial traversal of EPT

 EPT uses a hierarchical, tree-based design

 If the accessed flag of one internal entry is 0, then the accessed flags of all entries in its subtrees 

are definitely 0

 Locality of reference (traverse a tiny part of EPT)

Accessed: 1

Accessed: 0

Accessed: 1

Accessed: 1

Accessed: 0

…
…

…
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Observations

 Chunk commit is time-consuming 

 Wait for lock

 Write-back operation
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Decentralized Three-Phase Commit Protocol 

 Move this out of the synchronized block

 Support parallel commit while ensuring 

serializability

 Three phases:

 Pre-commit phase

 Commit phase

 Synchronization phase
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Wait for
Lock

Detect
Conflict

Broadcast 
Updates

Write-back
Updates

Subsequent 
Chunk

Lock

Insert into committing list

Update Chunk Info 

Check Committing List  
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Replay Memory Interleaving

 Guarantee all chunks will be properly re-built and executed in the original order 

 Design goal: maintain the same parallelism as the recoding phase

 1. Truncate a chunk at the recorded timestamp

 2. Ensure that all preceding chunks have been committed successfully before the current

chunk starts

20

Record & Replay Memory Interleaving with HAV



Peking University and Cornell University
21

Samsara Overview



Peking University and Cornell University

Experimental Setup

 4-core Intel Core i7-4790 processor, 12GB memory, 1TB Hard Drive

 Host: Ubuntu 12.04 with Linux kernel version 3.11.0 and Qemu-1.2.2

 Guest: Ubuntu 14.04 with Linux kernel version 3.13.1

Workloads

 Computation intensive applications

 PARSEC

 SPLASH-2

 I/O intensive applications

 kernel-build

 pbzip2
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Log Size

 Samsara generates log at an average rate of 0.0027 MB/core/s and 0.0031 MB/core/s  for 

recoding two and four cores

 Reduces the log file size by 98.6% compared to the previous software-only schemes
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Evaluation 

Log size produced by Samsara during recording (compressed with gzip).
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Recording Overhead Compared to Native Execution

 Compare the performance to native execution

 2.3X and 4.1X for recording these workloads on two and four cores

 Previous software-only approaches cause about 10X with two cores
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Evaluation 

Recording overhead compared to the native execution.
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We made the first attempt to leverage HAV extensions to achieve an efficient software-based replay 

system on commodity multiprocessors.

 We abandon the inefficient CREW protocol and instead use a chunk-based strategy.

 We avoid all memory access detections, and obtain each chunk’s read-set and write-set by 

retrieving the accessed and the dirty flags of the EPT.

 We propose a decentralized three-phase commit protocol which significantly reduces the 

performance overhead by allowing chunk commits in parallel while still ensuring serializability.
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Thanks
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Contact: xiaozhen@pku.edu.cn 
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