
Peking University and Cornell University

Samsara: Efficient Deterministic Replay in Multiprocessor

Environments with Hardware Virtualization Extensions

Shiru Ren, Le Tan, Chunqi Li, Zhen Xiao, and Weijia Song

June 24, 2016

Peking University and Cornell University

Introduction1

Background & Motivation2

3

Samsara Overview4

Conclusion6

Evaluation5

Table of Contents

Record & Replay Memory
Interleaving with HAV

2

Peking University and Cornell University

Nondeterminism

 Multiprocessor architectures are inherently nondeterministic

 The lack of reproducibility complicates software debugging, security analysis, and fault tolerance

Introduction

3

Peking University and Cornell University

Deterministic Replay

 Gives computer users the ability to travel backward in time, recreating past states and events

 Checkpoint + record all non-deterministic events

Checkpoint
Execute same instruction stream

Inject events in logged points

Initial State
Instruction stream

Final State

Non-determinism Events
(e.g. user / network inputs, interrupts…)

Final State’

Replay log

Recording
Phase

Replay
Phase

Introduction

4

Peking University and Cornell University

Deterministic Replay for Multi-processor

 Deterministic replay for single processor is relatively mature and well-developed

 Challenge on the multi-processor systems: Memory Access Interleaving

Introduction

5

Peking University and Cornell University

Hardware-based schemes

 Use special hardware support for recording memory access interleaving

 Redesign the cache coherence protocol

The FDR System [ISCA ’03]

6

Background & Motivation

Peking University and Cornell University

Issues

 Increases the complexity of the circuits, impractical for use in real systems

 Huge space overhead which limits the duration of the recorded interval

7

Background & Motivation
Hardware-based schemes

 Use special hardware support for recording memory access interleaving

 Redesign the cache coherence protocol

Peking University and Cornell University

Software-only schemes

 Modify OS, compiler, runtime libraries or VMM

 Virtualization-based approaches—CREW protocol

 CREW: Concurrent-Read & Exclusive-Write

P0

X = 1

P1

a = X

X = 0

Y = 0

b = Y + 1

c = X + Y

P0 : 23 P1 : 5

P0 : 24 P1 : 6

P1 : 5 P0 : 25

P0 : 25 P1 : 8
c = 0

23

24

25

5

6

7

8. . .

. . .

8

Background & Motivation

Peking University and Cornell University

Issues

 Each memory access operation must be checked for logging

 Serious performance degradation (about 10x compared to the native execution)

 Huge log size (approximately 1 MB/processor/second)

9

Background & Motivation
Software-only schemes

 Modify OS, compiler, runtime libraries or VMM

 Virtualization-based approaches—CREW protocol

 CREW: Concurrent-Read & Exclusive-Write

Peking University and Cornell University

To summarize

 Software-only schemes are inefficient without proper hardware support

 No commodity processor with dedicated hardware-based record and replay capability

10

Background & Motivation

Peking University and Cornell University

Our goal
 To implement a software approach that can take full advantages of the latest hardware

features in commodity processors to record and replay memory access interleaving

efficiently without introducing any hardware modifications.

 Hardware-assisted virtualization (HAV)
(e.g., Intel® Virtualization Technology)

11

Background & Motivation
To summarize

 Software-only schemes are inefficient without proper hardware support

 No commodity processor with dedicated hardware-based record and replay capability

Peking University and Cornell University

Point-to-point logging approach (CREW protocol)

 Record dependences between pairs of instructions Huge logs

 Large number of memory access detections (VM exit) Excessive overhead

12

Record & Replay Memory Interleaving with HAV

Peking University and Cornell University

Chunk-based Strategy

 Restrict processors’ execution into a series

of chunks

 Record chunk size & commit order

 Chunk execution must satisfy:

 Atomicity

 Serializability

P0 P1

.

P0 P1
.

13

Record & Replay Memory Interleaving with HAV
Point-to-point logging approach (CREW protocol)

 Record dependences between pairs of instructions Huge logs

 Large number of memory access detections (VM exit) Excessive overhead

Peking University and Cornell University

 Serializability: Conflict detection, Chunk commit

 Atomicity: Copy-on-write (COW), Rollback
P0

Chunk Start

LD (A)

COW ST (A)

ST (A)

ST (B)COW

Chunk Complete

Truncation Reason:
I/O Instruction

Commit

P1

LD (A)

Squash & Rollback

LD (B)

ST (B)

Re-execution

LD (D)

ST (D)

□C1

□C2

□C3 Conflict
Detection

R-set { A }
W-set { A , B }

Truncation Reason:
Chunk Size Limit

R-set { D }
W-set { D }

R-set { A , B }
W-set { B }

…
…

14

Record & Replay Memory Interleaving with HAV

Peking University and Cornell University

Obtain R&W-set Efficiently via HAV Extensions

 VM-based approaches: numerous VM exits (hardware page protection)

 Accessed and Dirty Flags of EPT (Extended Page Tables)

 Our approach: a simple EPT traversal

15

Record & Replay Memory Interleaving with HAV

Peking University and Cornell University

W(b)
R (b)

R (a)
R (c)

W(b)
R (b)

W(e)

VM exit

R (e)
R (d)

P0

W(b)
R (b)

R (a)
R (c)

W(b)
R (b)

W(e)
R (e)
R (d)

P0

a EPT traversal
16

Record & Replay Memory Interleaving with HAV
Obtain R&W-set Efficiently via HAV Extensions

 VM-based approaches: numerous VM exits (hardware page protection)

 Accessed and Dirty Flags of EPT (Extended Page Tables)

 Our approach: a simple EPT traversal

Peking University and Cornell University

Partial traversal of EPT

 EPT uses a hierarchical, tree-based design

 If the accessed flag of one internal entry is 0, then the accessed flags of all entries in its subtrees

are definitely 0

 Locality of reference (traverse a tiny part of EPT)

Accessed: 1

Accessed: 0

Accessed: 1

Accessed: 1

Accessed: 0

…
…

…

17

Record & Replay Memory Interleaving with HAV

Peking University and Cornell University

Observations

 Chunk commit is time-consuming

 Wait for lock

 Write-back operation

P0

Chunk
Complete

Wait for
Lock

Detect
Conflict

Broadcast
Updates

Subsequent
Chunk

Lock

Obtain
R&W-set

Write-back
Updates

18

Record & Replay Memory Interleaving with HAV

Peking University and Cornell University

Decentralized Three-Phase Commit Protocol

 Move this out of the synchronized block

 Support parallel commit while ensuring

serializability

 Three phases:

 Pre-commit phase

 Commit phase

 Synchronization phase

P0

Chunk
Complete

Wait for
Lock

Detect
Conflict

Broadcast
Updates

Write-back
Updates

Subsequent
Chunk

Lock

Insert into committing list

Update Chunk Info

Check Committing List

Obtain
R&W-set

19

Record & Replay Memory Interleaving with HAV

Peking University and Cornell University

Replay Memory Interleaving

 Guarantee all chunks will be properly re-built and executed in the original order

 Design goal: maintain the same parallelism as the recoding phase

 1. Truncate a chunk at the recorded timestamp

 2. Ensure that all preceding chunks have been committed successfully before the current

chunk starts

20

Record & Replay Memory Interleaving with HAV

Peking University and Cornell University
21

Samsara Overview

Peking University and Cornell University

Experimental Setup

 4-core Intel Core i7-4790 processor, 12GB memory, 1TB Hard Drive

 Host: Ubuntu 12.04 with Linux kernel version 3.11.0 and Qemu-1.2.2

 Guest: Ubuntu 14.04 with Linux kernel version 3.13.1

Workloads

 Computation intensive applications

 PARSEC

 SPLASH-2

 I/O intensive applications

 kernel-build

 pbzip2

22

Evaluation

Peking University and Cornell University

Log Size

 Samsara generates log at an average rate of 0.0027 MB/core/s and 0.0031 MB/core/s for

recoding two and four cores

 Reduces the log file size by 98.6% compared to the previous software-only schemes

23

Evaluation

Log size produced by Samsara during recording (compressed with gzip).

Peking University and Cornell University

Recording Overhead Compared to Native Execution

 Compare the performance to native execution

 2.3X and 4.1X for recording these workloads on two and four cores

 Previous software-only approaches cause about 10X with two cores

24

Evaluation

Recording overhead compared to the native execution.

Peking University and Cornell University

We made the first attempt to leverage HAV extensions to achieve an efficient software-based replay

system on commodity multiprocessors.

 We abandon the inefficient CREW protocol and instead use a chunk-based strategy.

 We avoid all memory access detections, and obtain each chunk’s read-set and write-set by

retrieving the accessed and the dirty flags of the EPT.

 We propose a decentralized three-phase commit protocol which significantly reduces the

performance overhead by allowing chunk commits in parallel while still ensuring serializability.

25

Conclusion

Peking University and Cornell University

Thanks

26

Contact: xiaozhen@pku.edu.cn

	Samsara: Efficient Deterministic Replay in Multiprocessor Environments with Hardware Virtualization Extensions
	Table of Contents
	Introduction
	Introduction
	Introduction
	Background & Motivation
	Background & Motivation
	Background & Motivation
	Background & Motivation
	Background & Motivation
	Background & Motivation
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Record & Replay Memory Interleaving with HAV
	Samsara Overview
	Evaluation
	Evaluation
	Evaluation
	Conclusion
	幻灯片编号 26

