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Abstract
Many applications perform real-time analysis on data stre-
ams. We argue that existing solutions are poorly matched
to the need, and introduce our new Freeze-Frame File Sys-
tem. Freeze-Frame FS is able to accept streams of updates
while satisfying “temporal reads” on demand. The system is
fast and accurate: we keep all update history in a memory-
mapped log, cache recently retrieved data for repeat reads,
and use a hybrid of a real-time and a logical clock to respond
to read requests in a manner that is both temporally precise
and causally consistent. When RDMA hardware is available,
the write and read throughput of a single client reaches
2.6GB/s for writes and 5GB/s for reads, close to the limit
(about 6GB/s) on the RDMA hardware used in our experi-
ments. Even without RDMA, Freeze Frame FS substantially
outperforms existing options for our target settings.

Categories and Subject Descriptors D.4.3 [File Systems
Management]: Distributed file systems

Keywords real-time, snapshot, log, distributed file system,
RDMA, causal consistency

1. Introduction
Consider an Internet of Things application that captures data
in real-time (perhaps onto a cloud-hosted server), runs a
machine-learning algorithm, and then initiates actions in the
real-world. Such applications are increasingly common: ex-
amples include the smart power grid, self-driving cars, smart
highways that help vehicles anticipate rapidly changing road
conditions, smart home and cities, and so forth.

This computing model creates new challenges, as illus-
trated in Figure 1. To create these three images we simulated
a wave propagating in a fish-tank and generated 100 10x10
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image streams, as if each cell in the mesh were monitored
by a distinct camera, including a timestamp for each of these
tiny images. We streamed the images in a time-synchronized
manner to a set of cloud-hosted data collectors over TCP,
using a separate connection for each stream (mean RTT was
about 10ms). Each data collector simply writes incoming
data to files. Finally, to create a movie we extracted data for
the time appropriate to each frame trusting the file system to
read the proper data, fused the data, then repeated. In the
figure we see representative output.

The image on the left used HDFS to store the files; we
triggered its snapshot feature once every 100 milliseconds,
then rendered the data included in that snapshot to create
each frame. This version is of low quality: HDFS is oblivious
to timestamps and hence often mixes frames from different
times. In the middle, we used our Freeze Frame FS (in the
remainder of this paper, FFFS1), configured to assume that
each update occurred at the time the data reached the data-
storage node. On the right, we again used FFFS, but this time
configured it to extract time directly from the original image
by providing a datatype-specific plug-in.

If a file system can’t support making a movie, it clearly
couldn’t support other time-sensitive computations. Today,
the only option is to build applications that understand time
signals in the data, but this pushes a non-trivial task to
developers and makes it hard to leverage the huge base of
existing cloud-computing analytic tools that just run on files.
With FFFS the issue is eliminated.

Our principle objectives are as follows:

1. High speed and scalability. When available, we wish to
leverage remote direct-memory access: RDMA.

2. Support for temporal reads.

3. Determinism (repeated reads yield the same result), tem-
poral accuracy and logical consistency [7].

4. Ease of use. POSIX programs use a file naming conven-
tion to issue temporal reads; time-aware programs use a
new API that makes time explicit.

1 Note that the Flash-Friendly File System is also abbreviated FFFS, but is
completely unrelated to our work.
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Figure 1. Reconstructed Wave. Full animations are available at https://goo.gl/QXaODs.
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Figure 2. Temporal Parallelism with Hadoop

2. Background
Among existing file systems, snapshot capabilities are com-
mon, but few permit large numbers of real-time states to
be captured. HDFS[37] limits snapshots to append-only
files, requires that snapshots be preplanned, and creates
them when the snapshot request reaches the HDFS server,
introducing inaccuracy. Ceph pauses I/O during snapshot
creation, and snapshots are costly to create[40]. Traditional
snapshot file systems[16, 17, 31, 33, 35] are generally
single-node solutions which are not designed to scale and,
like HDFS, they only support preplanned snapshots. In
contrast, FFFS offers a POSIX-compliant API with optional
extensions for temporally-aware applications, uses a novel
memory-mapped data structure to support high speed access,
has a particularly efficient way of employing SSD for
persistent storage, and is both temporally and causally
consistent. Moreover, there is no need to preplan snapshot
times: FFFS rapidly materializes data as needed.

2.1 Hadoop File System and Snapshot
Our work builds on the open-source HDFS[37] release:
we retained its outer layers, but largely replaced the in-
ternals. HDFS has two subsystems: the NameNode, which
implements the file system name-space, and a collection of
DataNode servers. Individual files are represented as sets of
data blocks, replicated across DataNodes so as to balance
loads and achieve fault-tolerance. The NameNode manages
file meta data along with the mappings from files to block
lists. To access a file, a client contacts the NameNode to
locate the block(s), then connects to the DataNodes, which
handle read and write requests. The NameNode participates
in operations that open, create, delete, or extend a file.

The existing HDFS system offers a restrictive form
of snapshots at the directory level, but it was inadequate
for our needs; we’ll briefly explain the issue. Consider
a client that requests a snapshot on directory “foo”. The
HDFS NameNode will create a new diff structure for the
meta data of “foo”. Initially this folder is empty, but on
future file creation, extension or deletion events for a file
in the directory, the event is logged into the diff. The
client accesses the snapshot via a read-only virtual directory
“foo/.snapshot/s0”. Snapshot creation costs are constant and
low: in our testbed, 10ms for an HDFS cluster running on
commodity servers. However, the approach does increase
HDFS costs when reading files that belong to a snapshot
and have changed since it was created: such actions must
touch both the original file and the diff. On the other hand,
because HDFS is limited to appends, the diff representation
is simple.

We rejected the existing HDFS snapshot mechanism for
several reasons. One is the append-only limitation: we be-
lieve that our users will require a standard file update API
with arbitrary in-place file writes. A second concern is that
HDFS snapshot treats the entire “session” from file open to
close as a single atomic update, which it tracks as if the
update had occurred when the file is opened. To compensate
for this, the HDFS user would need to issue frequent file

https://github.com/songweijia/fffs/wiki/Example:-Reconstructing-Wave-in-Tank-Using-HDFS-and-FFFS


close and re-open operations, a costly overhead. Additional
issues arise because HDFS snapshots are determined by the
moment when the system call was processed, and dependent
on the delay between when the system call is issued and
when the NameNode processes the request. In particular, if
no snapshot was anticipated for a given time, that system
state cannot later be accessed.

2.2 Hybrid Logical Clock
FFFS also builds on prior work to create clocks combining
logical and real-time guarantees. This research dates back
to Lamport’s widely-cited 1978 paper[21], defining what
he called Logical Clocks (LCs) and discussing their rela-
tionship with actual Real-Time Clocks (RTCs). For brevity,
we assume general familiarity Lamport’s logical clocks, and
instead focus on the Hybrid Logical Clocks (HLCs) used in
our work. The idea was introduced by Kulkarni[20] with the
goal of using an RTC to timestamp events, but adjusting
its value in such a manner that it would also possess the
logical guarantees of a logical clock. As a result, HLC clocks
maintain two components, 1) a real-time value derived from
the RTC value but adjusted in a manner given by the algo-
rithm, and 2) a logical value for maintaining consistency
among events with the same real-time value. In order to
obtain the real-time guarantees the RTCs need to be weakly
synchronized (maximum skew should not be more than ε

and ε does not need to be known). To synchronize clocks, we
use the Network Time Protocol (NTP)[28] or the Precision
Time Protocol (PTP)[23]. Nodes with malfunctioning clocks
shut down.

3. Architecture
As shown in Figure 3, FFFS retains the basic architecture
and API of HDFS, and is fully compatible with existing
HDFS applications. However, the core of FFFS replaces the
HDFS snapshot algorithm with our own mechanism.

Application
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Figure 3. FFFS Architecture: The components realizing the
FFFS core functions are marked in blue.

FFFS has three types of nodes: clients, the NameNode,
and the DataNodes. The NameNode and DataNodes each

possess an RTC and HLC clock. Snapshot requests are sup-
ported, but here we depart from the HDFS approach. In
HDFS, the time of a snapshot is simply the time when the
request reaches the NameNode and is processed. This is
problematic, because there may be a significant delay be-
tween when the request is issued and when the snapshot is
formed. Further, as we saw in Figure 1a, an HDFS snapshot
can mix contents from distinct states, or exhibit gaps in the
causal message order.

In FFFS, we treat the snapshot as a kind of dynamically
materialized temporal query: a view of the data in the system
as of the time that the analysis program wishes to read it.
In support of this new model, we changed the DataNode
block storage structure into what the figure shows as the
Mem Block Log (see Figure 3; details appear in Section 5).
This log-structure is highly efficient for writes[30, 34] and
can support writes at arbitrary locations within files. We
persist data to SSD storage, caching active data and our
index structure in memory.

The NameNode EditLog is a data structure used by HDFS
to recover non-persistent updates in the event of a system
crash. In our design, we reuse the EditLog to include the
history of past NameNode states. Details and other design
choices are discussed in Section 6.

4. The Snapshot Mechanism
An FFFS Snapshot materializes file system data at time t
from a collection of states of the NameNode and DataNodes.
A snapshot should be temporally precise and closed under
causality: if some event X happens before some event Y
included in the snapshot, then X must also be included. For
example, suppose that event X writes block B of file A at
time t. If a snapshot for time t includes data associated with
B, but omits the creation of B at the NameNode, the data
for B would be inaccessible even though it should logically
be part of the time-t snapshot. Conversely, if the snapshot
includes B but omits writes to a predecessor block (perhaps
at some other DataNode), file A will be left with gap or might
exhibit a mashup of data from different points in time, as we
saw in the reconstructed HDFS image in Figure 1((a)). Thus,
we need a consistent snapshot [7].

To construct such a snapshot, FFFS makes use of the
HLC timestamps to mark events. Let’s make the term event
more precise: it will denote any operation that changes node
status, including the sending or receiving of messages that
will cause such an operation to occur. FFFS tags all such
events with an HLC timestamp (r, l), where r and l are
the real-time and logical values respectively, as detailed in
Section 4.1. Further, each node logs all events that cause
local state changes.

The Namenode and Datanode maintain mappings from
time t to the latest event whose HLC’s real-time value is
less than t. These mapping are computed on demand when
the client request for the state at given point of time. Fur-
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Figure 4. Events and Messages

ther, as noted earlier, FFFS does not require an explicit
createSnapshot API. Instead, the internal data fetch mech-
anism always uses time to satisfy reads, fetching the data
applicable at any time point in the past. FFFS also maintains
a form of secondary index to simplify accessing the blocks
associated with a given time, but it is a form of soft-state: a
cached copy of information that can be recomputed when-
ever needed.

FFFS snapshots will be both temporally accurate and
also closed under the causal order. As shown in Kulka-
rni’s work[20], the HLC-timestamped events closest to a
given RTC value form a set having ε-temporal precision
and logical consistency: If the underlying real-time clocks
are synchronized with maximum skew ε , the RTC of all the
processes for the snapshot request at time t falls within (t −
ε, t]. This means that events where the local RTC clock was
higher than t − ε can be excluded for the snapshot. Further,
the method is deterministic: given the same NameNode and
DataNode logs, the same result will always be computed
for a given value of t. This is helpful when reconstructing
FFFS state after a complete shutdown, and gives the system
freedom to discard cached results.

4.1 Events and Messages
Our protocol extends the HDFS communication protocols
to ensure that that requests and responses piggyback HLC
timestamps. Consider the example of a block write shown in
Figure 4. We derived this figure from the one Lamport used
to explain the logical clock[21], where the vertical arrow
represents the evolution of a corresponding process, dots
represent events, and horizontal arrows represent messages.
We add boxes to label local RTC clock ticks. Notice that the
client never ticks the HLC clock, although it participates in
propagating the maximum received clock value from other

nodes (a write-only data source could thus just send its RTC
and an LC of 0). The client first issues an add block RPC
call to the NameNode to allocate a new block. The HLC
timestamp for the event and the message is initialized to
(0,0). On receiving the RPC call, the NameNode local RTC
clock is 101. The HLC for n1 will have value (101,0). The
NameNode next creates the metadata for the new block,
then responds to the client(n2). In the example, this occurs
quickly enough so that the RTC has not ticked, but we do
tick the logical clock, as seen in the event diagram. Now,
the client connects to the corresponding DataNode, issues a
write block RPC call and writes data to the new block.

In the above example, we only need to log three events:
n2, d2, and d5, because they represent the points where data
is changed: on event n2, the block metadata is created; on
event d2 the block is created in DataNode; and on event
d5 the first packet of data is written to the block. Events
internal to the client are not given HLC timestamps because
they are irrelevant to the file system states, and not every
event occurring in the NameNode or DataNode causes data
to change. For example, since read operations do not change
file system states, we neither count read operations as events
nor tick the HLC clock for them. In this way, we keep track
of all state changes and minimize the number of events in our
log: the shorter the log, the faster the state reconstruction.

In contrast, had we used the RTC when creating the
snapshot, event d2 would have been assigned timestamp 100,
while event n2 (which casually precedes event d2) would
have been assigned timestamp 101. This would have resulted
the inclusion of data from a block present in the DataNode,
but not the corresponding metadata event in the NameNode:
one of the two examples of inconsistency mentioned above.
It is equally easy to construct examples in which naive use of
real-time clocks results in mashed up snapshots containing
data from two or more distinct states.

4.2 Snapshot Management
Traditional snapshot file systems use shadow directories [31,
35, 37] or volumes [18, 33] to manage the snapshots. As
we mentioned before, FFFS does not need such a structure
because snapshot information is implicitly and losslessly
embedded in the timestamps of the events.

To read from a file in a snapshot defined by time t, the
FFFS client first contacts the NameNode for the metadata
of the file at time t. The NameNode finds/constructs its
latest state before t according to the real-time value of the
HLC timestamps and returns it to the client. The client then
contacts corresponding DataNodes for the file data at time
t. Similarly, the Datanode finds/constructs the file data using
the log structure we are going to discuss in Section 5.

4.3 The Quality of the Snapshots
In many real-time settings, a precise estimate of the snapshot
quality is used to parameterize computation on the snapshot
data. Our method lends itself to such an analysis. For ex-
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ample, if a system were to use Google’s TrueTime clock
synchronization method, as implemented in Spanner[9], it
would be possible to constrain time skew between the NTP
master and slave to less than 5ms with 99.9% confidence
level or 1ms with 99% confidence level. The maximum skew
between two slaves will be 10ms at 99.9%, or 2ms at 99%.
The FFFS snapshot will then have 10ms temporal precision
with 99.9%, and 2ms precision with 99% confidence.

5. Multi-Log Structure
FFFS needs the history of each file block to reconstruct past
versions of data blocks. To this end, each block is repre-
sented by a separate log within the FFFS Multi-Log struc-
ture. The Multi-Log is stored in memory and asynchronously
flushed to non-volatile storage. We use it to implement both
normal POSIX file system operations and temporal reads.
Although log structures have been used in previous storage
systems like Log-structured FS[34] and Corfu[5], we need to
blend the log with hybrid logical clock to address the unique
requirements of this new type of real-time application.

The Multi-Log is shown in Figure 5. Portions of the state
that we persist to non-volatile storage are highlighted in
bold; the remainder is cached state that can be reconstructed
as needed. Each DataNode maintains a set of active Blocks
along with previously deleted ones (for snapshot reads). The
Block Map is, as the name suggests, a map from Block IDs
to Blocks. Every Block keeps a Log, which maintains all the
updates in the Block, as well as the Log length. Each log
entry has four fields: a) the type of an operation (Beginning
of Log, Create Block, Write, Delete Block, shown in Figure 5
as BL, CB, W, and DB respectively.), b) the User timestamp
(if it exists) derived from the actual data being written, c) the
HLC timestamp corresponding to the operation, and d) in
case of a write operation, metadata (offset and length of the
write, etc.) along with pointers to the data.

We keep the block contents in separate FFFS pages
which are stored on SSD, paged into memory on demand,

and then cached for quick access on repeated reads. Every
write operation consumes some integral number of FFFS
pages; this reduces memory fragmentation and allows ef-
ficient management of data, but incurs space overhead,
since even a small write requires a full page. By default,
we use the operating system page size, which yields high
read/write performance, but FFFS can be configured to use
other values.

5.1 Block Operations
FFFS must append every update operation as a Log en-
try to the corresponding Log, including the user-specified
timestamp (if any), and the server’s local timestamp. Since a
write operation can partially edit a page, a backward search
seemingly required, to find the previous version of the page,
but if naively implemented, such a search would have cost
O(Log Length). To avoid this overhead, FFFS maintains a
number of hints and secondary indices. The Block structure
contains a status fields that takes (A)ctive and (D)eleted as
values, as well as some block metadata that includes the
block length, last update timestamps, etc. Additionally, it
maintains an array of page pointers where for each page, the
corresponding entry points to the latest updated data. Notice
that there is no data duplication, since these are soft links
(pointers) to the actual data. Update operations keep these
fields current. Using them, we are able to reduce the update
cost to a constant delay.

A similar problem arises when satisfying temporal reads.
Suppose a read needs data from a Block at a specific point t.
Here, FFFS must find the most recent update to that block,
and if that was the result of a series of partial updates to other
preexisting blocks, must also locate those. To facilitate this
operation, FFFS caches all the needed information in Snap-
shot Blocks. In case of a temporal read, FFFS first checks
the snapshot index. If there is a snapshot associated with
the last entry, FFFS updates the snapshot entry in the Block
Structure and performs the operation from the corresponding



Snapshot Block (avoiding the major overhead of a backward
search). If the block is not in cache, FFFS carries out a binary
search to find the last Log entry in this snapshot. Notice that
reads at different time will often be satisfied from a single
snapshot, and reads from different snapshots will often be
satisfied from the same cached block, because blocks change
only when updated. For example, in Figure 5, user time 3 and
system time 5,0 lead to the same snapshot.

5.2 Data Persistence
FFFS stores data to a non-volatile medium for fault-tolerant
persistence. Additionally, the persistent store allows FFFS to
manage much larger amounts of data than can fit in DRAM.
Our eviction policy uses a simple FIFO rule: younger pages
are retained, and older pages are evicted in age order. Later,
if an evicted page is re-accessed and not available in the
block cache, FFFS will reload it from persistent storage.

It is not completely obvious how to handle I/O to the
persistent store. A first idea was to use memory-mapped files
for the FFFS page files and logs, employing a background
thread to flush data periodically to the non-volatile storage.
However, while an occasional DMA write to SSD might
seem like a minor cost, we found it difficult to control the
time and order when data to be flushed to disk2. Further,
cases arose in which our page cache flusher needed to lock
a page but by doing so, prevented other writes from creating
new log entries, a highly disruptive situation.

Accordingly, we shifted to a different approach. FFFS
utilizes semaphore-guarded event queues to synchronize the
data persistence thread (the consumer) and writers (the pro-
ducers). After a writer finishes writing a block, it posts an
event to the corresponding queue (selection with the block
ID), which contains 1) a pointer to the block entry being
written and 2) the number of log entries in its log. The data-
persistence thread reads from the queue and flushes the log
entries in FIFO order. For each log entry, its FFFS pages are
flushed first, so that a persistent entry will always be com-
plete. By shifting persistence off the critical path, we gain
substantial speedup. The approach generates very random
IOs, and in our experience performs poorly with rotational
disks; our evaluations focus on SSD, where this effect is not
observed (good performance would also be seen with new
technologies like PCM[41] and ReRAM[4]). A further op-
timization is to use multiple queues and persistence-threads
to maximize IO parallelism.

Upon recovery from a failure, a DataNode reconstructs
its memory structures from persisted data. Notice that (as
with other file systems), data that has not yet been persisted
could be lost in a failure. Accordingly, if an application
needs to be certain that its state is safely persisted, an fsync
operation should be issued to flush any pending writes. To

2 In Linux, the behavior of pdflush kernel threads are controlled by six
thresholds based on the volume and age of page cache[1]. Those kernel
actions can be triggered by other applications.
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accomplish this, the client sends an fsync message to all
involved DataNodes for the opened file; the DataNodes wait
until the data-peresistence thread flushes all the correspond-
ing data to disk; and finally, they acknowledge the client.
Invocation of fsync will successfully return when all the
acknowledgements are received.

6. Additional Design Choices
6.1 Random Write Support
Whereas HDFS only permits appends, FFFS allows updates
at arbitrary offsets within files. To support this, we enable
use of the seek system call, which the HDFS API includes
but does not actually support (it returns an error unless the
seek was to the end of the file). On each seek, the client
library checks whether the request moves the file pointer to
a new block or not. If the pointer is in the same block, we
just update the pointer and reuse the data transfer connection
to the datanode. Otherwise, we close the current DataNode
connection and start a new connection to a DataNode that
contains the target block. Note that we currently do not allow
seeking beyond the end of file, which leaves a hole in the file.

HDFS uses a fixed 128KB TCP window size for data
transfer between a client and a datanode, or two data nodes,
selected to maximize throughput in Gigabit networks. How-
ever, a much larger window size is needed to saturate a
10 Gigabit NIC. We used the iperf benchmark[39] to test
throughput between two servers with both Gigabit and 10
Gigabit NICs. As shown in Figure 6, the Gigabit NIC sat-
urates when the TCP window size reaches 64KB, whereas
the 10 Gigabit NIC doesn’t saturate until the TCP window
size reaches 1MB. To improve throughput, instead of using
a fixed TCP window size, we choose to allow the TCP
congestion control algorithm to adapt to available band-
width. CUBIC[14], the default algorithm in Linux, finds this
saturation point quickly.

6.2 Throughput and Latency Optimization
The HDFS DataNode uses a single thread to handle each
write operation. It first reads a data packet from the network,
writes to disk, and then reads the next data packet. To im-



prove performance, FFFS uses two threads for this purpose:
One reads network data, writing it to a circular buffer, and
the other reads from the buffer and writes to the blog. In our
evaluation, we refer to this as the write pipeline.

For embedded real-time applications, low latency is
sometimes more important than throughput. Accordingly,
we introduced a latency priority mode to FFFS. When
latency priority is requested, we disable Nagle’s algorithm
in TCP[29]. We also disable buffering in the client library
so that the written data is sent as soon as it is written. These
changes reduce throughput because less pipelining occurs,
but also reduce delay.

Copying data, particularly for large files, introduces huge
overheads. To avoid these high costs, HDFS uses the zero-
copy sendfile system call to accelerate reads. Once a block
file is cached, sendfile can send data from the cache to the
NIC driver directly, avoiding data copying between kernel
and user spaces. To leverage this API, we create a file in
tmpfs [38] and map it in the address space of FFFS datanode
process. This enables sendfile for reads from remote clients.
With this approach, data can be accessed both as a file, and
as a memory-data structure, without any need to duplicate
data and with no loss of performance when bulk transfers
occur.

6.3 RDMA Transport Layer
Cloud computing systems such as Azure increasingly offer
RDMA[8, 15, 25, 32] data transfer via RoCE or Infini-
Band network switches and NICs, and we also wished to
leverage this capability, when available. Accordingly, FFFS
interrogates the network interfaces and, if RDMA is en-
abled, uses RDMA instead of TCP/IP to move data. Our
experience shows that, even when jumbo frames and the
TCP offload Engine are both enabled, a TCP/IP session will
only achieve 40Gbps if running over a network that uses
Ethernet standards (for example, on a 100Gbps Ethernet, our
experiments showed that TCP over IP peaked at 40Gbps).
In contrast, using RoCE, we can easily achieve a read/write
throughput at 97Gbps, very close to the hardware limit.
The FFFS RDMA transport layer moves data at RDMA
speeds whenever the hardware is available on both the client
and server platforms, reverting to TCP if one or both lacks
RDMA capable NICs.

RDMA supports two modes of operation: the so-called
one-sided and two-sided cases. Both involve some set-up.
With one-sided RDMA, one node grants the other permis-
sion to read and write in some memory region; two-sided
RDMA is more like TCP, with a connection to which one
side writes, and that the other reads. The actual operations
are posted asynchronously and carried out using reliable
zero-copy hardware DMA transfers. Our design uses the
one-sided mode, with the FFFS DataNodes initiating all
RDMA operations.

6.4 External time sources
Notice that when capturing data from a sensor, the resulting
update may contain temporal data of higher quality than
anything accessible within our system. For demanding real-
time applications, it would be of interest to extract these
timestamps. We introduce a per-datatype plug-in to FFFS,
which parses and extracts the user timestamps from data
records. On processing the data stream, each record is tagged
with both Kulkarni HLC timestamp and the user timestamp,
shown as ‘sys time’ and ‘user time’ in Figure 5. Both TCP
and RDMA preserve FIFO order, hence timestamps of le-
gitimate records will increase monotonically. FFFS protects
itself against faulty writers by rejecting any record carrying
a user timestamp lower than a previous one. FFFS also
tracks the platform time at which records were received and
written. Note that because FFFS tracks both user time and
system time, a temporal read can specify which is preferred.

7. Evaluation
We deployed FFFS in a variety of environments to confirm
that our solution is portable and to evaluate performance.
Our microbenchmarks were conducted on a 19-node cluster
called Fractus deployed in the Department of Computer at
Cornell. Each Fractus server is equipped with one 10 Gigabit
NIC connected to a 10 Gigabit Ethernet environment, has
96GB RAM and two Intel E5-2690 CPUs(8 cores each),
and runs Linux 3.13. For persistent storage, our servers are
equipped with a 240GB PCIe SSD card containing four
drives, each 60GB in size. The peak throughput of any single
drive is 450MB/s. We configured one server as an NTP
server, and synchronized the others against it. Time offset
between the NTP server and the others was monitored using
the NTP query tool(ntpq); we found that our nodes were
synchronized with a time skew of no more than 1ms.

To evaluate FFFS performance over RDMA, we equipped
Fractus with Mellanox 100 Gbps RDMA dual-capable NICs,
and installed two 100Gbps Mellanox switches, one for
RoCE and one for Infiniband. For the work reported here,
both yielded identical performance.

We also include data from some experiments conducted
using the U. Texas Stampede system, an HPC cluster with
thousands of nodes. Each Stampede node has 32GB memory
and two 8-core CPUs and SSD storage units. The nodes are
equipped with a 56 Gigabit InfiniBand adapter with RDMA
support. Finally, we tested FFFS in a private Cloud service
at Cornell, which is configured to mirror the Amazon EC2
environment. This private Cloud runs virtual machines on
KVM hypervisor.

Unless otherwise specified, FFFS and HDFS both used
64MB blocks. Data replication and checksums are disabled
in HDFS. The FFFS page size is 4096 Byte.



7.1 Snapshot Quality
Our first experiment was the one used to create Figure 1.
Here we used a water wave simulator[2] to generate a dataset
representing how the height of surface will change during a
wave propagating in a square fish-tank. The dataset contains
surface height values that we translated into a 100x100 mesh
of small 10x10 images, each containing the exact simulation
time, at a rate of 20 samples per second.

We ran this experiment in our private Cloud. In both
the HDFS and FFFS deployment, one NameNode and six
DataNodes exclusively run in seven high performance vir-
tual machines, each of which has 4 CPU cores and 16 GB
memory, and with clocks synchronized using NTP. The 100
client applications run in 10 virtual machines, each of which
has 1 CPU and 4GB memory (had the data been captured by
IoT sensors, network delays would have created even greater
latency variations). For HDFS, we run an additional thread
to create a snapshot every 100ms. In this case, each time we
write a data record to HDFS, we close and re-open the file to
force an update to the file metadata in the NameNode.

Then we reconstruct three movies containing 100 frames
each: a) HDFS snapshots, b) FFFS state by 100ms interval
according to HLC timestamp, and c) FFFS state by 100ms
interval according to user timestamp. respectively. Figure 1
shows the 37-th frame from each of the three movies; by
clicking the caption, the reader can see the full animations.
With HDFS updates to the HDFS NameNode metadata are
too slow and data piles up, causing bursty writes, and the
snapshot operations suffer delays. We obtain snapshots that
mix data from different points in time and might not be
closed under the causal happens-before relation.

FFFS does far better: by relying on its temporal read fea-
ture, it extracts precisely the data written. Here we see both
the platform-time case (with updates timestamped using the
DataNode server clocks) and user-time (with update times
extracted from the records themselves). The small distor-
tions in Figure 1b arise from network latency and scheduling
skew. Figure 1c is perfectly accurate.

7.2 Read and Write Performance
Next we evaluated the FFFS read/write performance, com-
paring this with that of HDFS. All persistent file data is
written to SSD. For this experiment, we limited the system
to network IO over our 10 Gigabit Ethernet, and disabled
replication and data checksum in HDFS. In this mode, both
HDFS and FFFS transfer data over TCP.

Our experiment launches a single client that writes at
full speed for ten seconds. Then some other client reads the
file. The peak read and write throughput is calculated by
dividing the file size by the time spent reading or writing.
Figure 7a shows how throughput changes as a function of
data packet size. When the data packet size is small (1KB),
overheads of our communication layer dominate. Once the
data packet size grows larger, the bottleneck moves to the
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Figure 7. Throughput Performance

IO system. The HDFS DataNode invokes write system calls
to persist data. Although HDFS does not sync its writes
immediately, the kernel will soon do so, and we see that
write performance converges to the SSD I/O rate. In contrast,
the FFFS DataNode has a separate persistent thread that
flushes data into disk, without blocking the data-receiving
path. Therefore, FFFS hits a different and higher bottleneck:
the network. This explains why, when data packet size is
256KBytes, the FFFS write achieves 900 MB/s while the
HDFS write is only 393 MB/s.

Both HDFS and FFFS benefit from caching on re-reads.
To quantify this effect, we read each file twice with the
data packet size fixed at 128KB, which is the optimal size
for a 10G network. The first HDFS read is slower because
the data is not yet fully cached. FFFS has a further over-
head: although the data blocks will still be in memory, when
these first reads occur, FFFS will not yet have constructed
its snapshot data structures. On the other hand, with larger
writes, the log will have a small number of records, and
hence, the first FFFS read performance improves as the write
transfer size grows. The overhead of constructing the index
is acceptable: for writes larger than 16KB, it slows down the
read by less than 4%. Once all data is cached in HDFS, and
in the case of FFFS we have also constructed the indices,
the read performance(second read) rises, reaching the limit
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Figure 8. Bursting Scalability

of a 10 Gigabit NIC, which is about 1.164GB/s (measured
by iperf).

Next, we looked at the benefit of RDMA. For this, we
ran our experiments on the U. Texas Stampede cluster. Re-
call that Stampede has smaller per-server memory limits,
hence we reduce the write duration from ten seconds to
three seconds. This amount of data will fit in memory, hence
we are not rate-limited by I/O to the SSD storage devices,
but on the other hand, writes still involve more work than
reads. We configured our RDMA layer to transfer data in
pages of 4KB, and used scatter/gather to batch as many
as 16 pages per RDMA read/write. Figure 7b shows that
the FFFS read and write throughput grows when the data
packet size used in write increases, similar to what was seen
on Fractus. When our clients write 4MBytes per update,
FFFS write throughput reaches 2.6 GB/s, which is roughly
half the RDMA hardware limit of 6 GB/s (measured with
ib send bw). FFFS read throughput reaches 5.0GB/s.

We tested the aggregate throughput by using multiple
clients to saturate the two file systems. Here, we used six
times as many clients as DataNodes. We run 3 client in-
stances per node, in the same cluster with the same hardware
configuration as for the DataNode servers. For the write test,
each client writes 1GB data to a file at full speed. We start all
clients at the same time and wait till the last client finishes.
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The aggregate write throughput is calculated as 6GB times
the number of DataNodes and divided by the test time span.
The read throughput is computed in a similar manner, except
that the page cache is evicted prior to the first read to ensure
a cold-start. We ran this experiment at different scales in
both Fractus and the Stampede HPC cluster. The experi-
ments scale up to a 4-DataNode setup in Fractus, consisting
of 1 NameNode server, 4 DataNode servers, and 8 client
servers. On Stampede, we scaled up to a 16-DataNode setup
consisting of 1 NameNode, 16 DataNode servers, and 32
client servers. We compared FFFS with two configurations
of HDFS: one in which we used HDFS in its normal manner.
Here, HDFS will not immediately flush data to disk even on
file close. In the second case we illustrate a “synced” HDFS,
which flushes data to disk on the fly, and then removes
pages from its cache to maximize available memory for new
incoming data.

Figure 8a shows the Fractus experiment results. The ag-
gregate throughput grows in proportion to the number of
DataNodes. FFFS and HDFS both achieve nearly the full
10G network throughput. In contrast, synced HDFS is half as
fast: clients must wait for data to be flushed to disk, causing
the SSD I/O to emerge as a bottleneck. Figure 8b shows the
HPC results for FFFS (HDFS doesn’t have native support for
RDMA). Notice that the Y axis is log scaled. Again, we can
see that file system throughput grows in proportion to the
number of DataNodes, confirming that FFFS scales well.

7.3 Data Persistence
Next, we ran a single client writing to FFFS on Fractus over
its 10 Gigabit Ethernet, to show the influence of data persis-
tence on write performance. The FFFS setup is configured
with one DataNode. We tested FFFS write throughput in two
scenarios: a) SSD Persistence: data is flushed to SSD; b) No
Persistence: data is not flushed to persistent storage at all.
We started a single client writing a file at full speed for ten
seconds. We run the test for five times for each scenario and
calculate the average and error bars. Figure 9 shows how the
write throughputs change with transfer data size. We find
no significant throughput differences with or without data
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Figure 10. DISK I/O Pattern

persistence. This demonstrates that critical path latency is
not affected by speed of the slower persistence thread.

We monitored the disk IO pattern to understand how data
is flushed to disk. Figure 10 shows the results when data
packet size is 128KB, 512KB, and 2MB, where X is the time
axis and the Y-axis shows the throughput seen by the client
(red), side by side with that measured by io stat (blue), a disk
IO profiling tool we launched on the DataNode. Although
the client always sees optimal end-to-end throughput, the
background disk I/O rates tell a very different story. The
larger the transfer packet size is, the higher disk I/O rate it
can achieve. This is because the transfer packet size deter-
mines the data size of a log entry, which in turn determines
the amount of data simultaneously flushed 3. Flush size
smaller than 2MB cannot saturate the I/O bandwidth of our
SSD device, causing the slow disk I/O rates in figure 10a and
figure 10b. We believe that a batched flush would improve
the disk I/O rate and plan to add this feature in the future.

7.4 Block Log Overhead
FFFS snapshots have no particular overhead, but our algo-
rithm does construct a soft-state snapshot index structure
via log traversal on demand. To evaluate the snapshot con-
struction overhead, we started a client that issues 500,000
randomly located writes to a 64MB file. Each random write
overwrites a 32KB file region. Here we deployed FFFS on
Fractus with 10 Gigabit Ethernet. Notice that the block size

3 We do this to guarantee that, when a DataNode crashes, no log entry is
lost if its timestamp is earlier than that of some log entry in SSD.

 0

 0.5

 1

 1.5

 2

 0  100  200  300  400  500R
e
a
d
 T

h
ro

u
g
h
p
u
t 
(G

B
/s

)

# of snapshot

Figure 11. Read From Snapshot

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

1K 2K 4K 8K 16K 32K 64K seq

N
or

m
al

iz
ed

 D
at

aN
od

e 
M

em
or

y 
U

sa
ge

Write Size

page size=512B
page size=1KB
page size=2KB
page size=4KB
page size=8KB

Figure 12. DataNode Memory Overhead

is 64MB so that the file is exactly in one block and all writes
go to the same block log. The page size is 4KB so each write
will create a log with 8∼9 pages of new data. We then start a
client to read 500 file states after every 1000 random writes.
The read throughput measurements are shown in Figure 11.
Snapshot 0 is the earliest snapshot. The read throughput
is stable at 1.1 GB/s, which is close to the hardware peak
rate (1.164 GB/s). This supports our assertion that snapshot
construction is highly efficient.

We should mention one small caveat: we have not yet
evaluated the FFFS data eviction scheme. With very large
amounts of memory in use, some data pages might need
to be loaded from slower persistent storage. Because our
eviction algorithm keeps younger data in memory, we expect
that this will result in a performance drop for access to very
old data, but would have no impact on access to more recent
data.

We also use the single DataNode FFFS setup to test the
memory overhead of the block log. We write a total of
128MB to a file and measure the total memory use of the
entire file system. The packet size is configured to 64KB,
the default value used by HDFS. We used random writes
with varying sizes as well as sequential writes with different
page size configurations, subtracted the initial memory us-
age, and then normalized the result relative to the data size,
as shown in Figure 12. The x-axis shows how much data
is written at a random location. Write size ‘seq’ represents
sequential write. When the write size is small, the memory
usage is high. This is because the blog manages data with
page granularity, hence even a small update occupies at least
one page. This is also why, when the write size is small,



smaller page sizes are more space efficient. On the other
hand, small pages require more page pointers in the blog. It
turns out that pointer overhead is of minor consequence: 512
byte pages used only 5% more memory, 1KB pages require
2.8% more memory, and 4K pages require just .1% memory
overhead.

8. Related Work
Our work falls into a richly populated space that includes
prior research on distributed clocks, snapshottable file sys-
tems and in-memory storage systems.

8.1 Distributed Clocks
Lamport[21] introduced logic clocks as a way to reason
about causality in distributed systems. However, as dis-
cussed in [20], naive merging of LC and RTC values can
lead to unbounded drift of the clock from the RTC values
under certain circumstances. The HLC algorithm we used,
introduced by Kulkarni, avoids this problem. The Vector
Clock (VC)[27] represents causal order more accurately
than a basic LC, but is not needed in our setting: in effect,
the HLC timestamps on the blogged events capture all
the information needed to achieve an accurate snapshot.
Google’s Spanner system uses a scheme called True Time
(TT) [9]. TT requires more accurate clock synchronization
than HLC, and Spanner sometimes needs to delay an event
if the clock of the sender of a message is ahead from the
receiver. Orbe’s Dependency Matrix Clock (DM-Clock) [11]
also suffers from this problem.

8.2 Snapshottable File Systems
HDFS originated as an open-source implementation of
Google’s GFS[13], a fault-tolerant file system that runs on
commodity hardware. In consequence, GFS has a design
similar to ours and could probably be extended to use
our techniques: there is one master server, responsible for
metadata management, and many chunk servers storing file
blocks/chunks. As currently implemented, GFS supports
directory-based snapshots, created as a delta over the direc-
tory metadata. In-place file modifications are not permitted
for files included in snapshots. The snapshot implementation
in HDFS is due to Agarwal etc, and is discussed in more
detail in [3].

The Elephant file system[35] enables the user to back up
important versions of their files, intended as a way to back
out of erroneous file deletions or overwrites. It extends the
inode and directory data structures to store version history.
Elephant is implemented in FreeBSD kernel and exposes a
set of new system calls. In contrast to FFFS, this work is a
purely single node solution .

Ext3cow[31] is an extension to the ext3 file system pro-
viding functionality similar to the Elephant File system. Un-
like elephant file system, ext3cow has better compatibility
since its snapshot is managed in user space and preserves

the VFS interface. Like elephant, ext3cow is a single node
solution. The B-Tree file system(Btrfs)[33] was designed
to be Linuxs default filesystem. Btrfs uses B-tree forest to
manage all objects in a file system. This facilitates Copy-
on-Write(COW) on updates. Avoiding in-place write helps
Btrfs achieve atomicity and support snapshots, although the
metadata is significantly more complicated. Btrfs supports
snapshot on subvolumes. Both of these systems are tra-
ditional disk file systems, and the snapshot is limited to
append-only operations. Like HDFS, both treat operations
between open, flushes, and close as a transaction that is
logged at the time of a flush or close. Note that flush isn’t
totally under user control and can also be triggered by a
file IO buffer, output of a newline, or other conditions. An
Ext3cow snapshot is read-only, whereas BTRFS actually
allows writes to a snapshot: an application can “change the
past”. A concern is that such an option could be misused to
tamper with the historical record of the system.

Other snapshottable file systems include WAFL[16], a
product from NetApps. It provides periodic snapshots for
recovery purposes. Similar to ext3cow, the WAFL snapshot
mechanism is based on Copy-On-Write inodes. WAFL sup-
ports only at most 20 snapshots. Coda[36] replicates data on
different servers to achieve high availability, and this repre-
sents a form of snapshot capability; the client can continue
working on cached data during network disconnection and
Coda resynchronizes later. Coda tracks modification in the
file versions to detect write-write conflicts, which the user
may need to resolve. The Ori file system[26] enables users
to manage files on various devices. It captures file history
information in a revision control system, and has a flexible
snapshot feature similar to ours. However, this solution is
focused primarly on small files in a multi-device scenario
where offline updates and split-brain issues are common.
Our data-center scenario poses very different use cases and
needs.

8.3 In-Memory Storage
Spark, which uses HDFS but keeps files mapped into mem-
ory, is not the first system to explore that approach. Other
memory-mapped store systems include RamCloud[30] is an
in-memory distributed K/V store, FaRM[10], which is also
a K/V store, and Resilient distributed datasets (RDD)[42],
which solves speed up distributed computing frameworks
by storing the intermediate results in memory. The Tachyon
file system[24] is one member of the UC Berkeley stack.
It is an in memory file system and implements a HDFS in-
terface. Tachyon does not use replication for fault-tolerance
but use lineage to reconstruct lost data, like RDD. In our
understanding, Tachyon is more like a memory caching tool
than a complete in-memory file system in that it only hold
the working set in memory.
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8.4 Others
Spanner[9] is Googles geographically distributed, transac-
tion capable, semi-relational database storage. Spanner uses
high precision clocks (GPS and atomic clocks) to make
transaction timestamps. This enables a reader to perform
lock-free snapshot transactions and snapshot reads. We did
not feel that direct comparison would be appropriate: Span-
ner emphasizes geo-replication, and FFFS is intended for
use in a data center. Kafka[19] is a log-structured storage
system and can support many of the same features as FFFS.
However, it is a real-time system, and is not optimized for
highly parallel access to huge numbers of snapshots and
would not perform well in our target environments.

9. Conclusions
Our paper presented the design, implementation, and eva-
lutation of the Freeze-Frame File System. FFFS is able to
accept streams of updates from real-time data sources while
supporting highly parallel read-only access to data from
backend computations running on platforms like Spark (the
in-memory Hadoop). The FFFS read API supports access
to large numbers of consistent and lightweight snapshots,
with tens of milliseconds granularity, enabling a new type
of temporal analysis that can access data in time even as
the computation is spread over large numbers of nodes for
speed. Our approach offers both causal consistency and a
high degree of temporal precision. We use in-memory log-
structured storage, so that snapshots can be created very
rapidly; the associated data is materialized on demand with
small overhead, and the algorithm is deterministic, so that
the same request will return the same result even if our helper
data structures are no longer available.

In ongoing work, we are extending FFFS in several ways.
As seen in Figure13, a first goal is to make the file sys-
tem fault-tolerant and increase the scalability of its core
components. To this end, we are sharding the NameNode,
using file names as a key and applying a deterministic hash
function that maps from the name to a shard index. The
figure shows a case with two shards. We are also replicating
the NameNodes and DataNodes, both for fault-tolerance and
to sustain greater read loads.

To manage the overall structure and create these repli-
cated groups, we are working with Derecho [6], a new
RDMA-based group communication library that offers strong
consistency and has very low overheads. Derecho is a
layered system. Its lowest layer is a scalable data replication
tool called RDMC that builds a structured overlay of RDMA
links and then runs a data relaying protocol within the
overlay with reliability guarantees corresponding to virtu-
ally synchronous multicast[12] in the case of in-memory
replication, or Paxos [22] for persistent data replication.
A second layer automates the creation and management of
groups with subgroups, which can automatically be sharded,
within them.

Thus we can create an overall FFFS group (large oval)
within which the NameNode is a sharded layer (blue), the
DataNodes are a second sharded layer (green), and with
direct support for multi-file replication when an application
running on Hadoop will access some set of files on each of a
sub-set of the clients (1-to-many arrows). Derecho provides
all of the needed functionality, including strongly consistent
replication, multicast, membership management, and fault-
tolerance. Indeed, because in-memory replication is often
sufficient for fault-tolerance, we can potentially dispense
with the slow write to back-end SSD storage if the target set-
ting won’t need to tolerate complete shutdowns and is con-
tent tolerating partial failures that leave some of the replicas
active, with their memory intact. As an intermediary option,
we can offer fast in-memory fault-tolerance with slightly
lagged SSD persistent logging, giving ultra-fast reliability
up to multiple concurrent failures, and then recovery from
persistent backup for extreme outages, but at risk of losing
a few hundred milliseconds of data (the SSD rarely lags by
more than this).

Beyond these extensions to FFFS, we have become in-
terested in other APIs that could be supported over the same
infrastructure. Of particular interest is Kafka, a widely popu-
lar pub-sub API[19] layered over Zookeeper. Because FFFS
can mimic all aspects of the Zookeeper functionality, Kafka
is easy to port and will then run over FFFS, but with supe-
rior scalability and time awareness: features lacking in the
standard Kafka release.

Both of these projects are currently underway and should
be finished late in 2016 or early in 2017. Our plan is to
make them available on our open-source distribution site,
github.com/songweijia/fffs (mirrored at fffs.codeplex.com).
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