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1. INTRODUCTIONIt is ommonly agreed that Web tra� follows the Zipf-likedistribution, whih is an analytial foundation for improvingWeb aess performane by lient-server based proxy ahingsystems on the Internet. However, some reent studies haveobserved non-Zipf-like distributions of Internet media traf-� in di�erent ontent delivery systems. Due to the varietyof media delivery systems and the diversity of media on-tent, existing studies on media tra� are largely workloadspei�, and the observed aess patterns are often di�erentfrom or even on�it with eah other. For Web media sys-tems, study [3℄ reports that the aess pattern of streamingmedia is Zipf-like in a university ampus network, while study[2℄ �nds that it is not Zipf-like in an enterprise media server.For VoD media systems, study [1℄ �nds that it is not Zipf-likein a multiast-based Media-on-Demand server of a ampusnetwork, while study [9℄ reports it is Zipf-like in a large VoDstreaming system of an ISP. For P2P media systems, study [4℄reports that the aess pattern of media workload in KaZaasystem olleted in a ampus network is not Zipf-like, whilestudy [5℄ reports that it is Zipf-like in another ampus net-work. For live streaming media systems, study [8℄ reports it isZipf-like while study [6℄ reports it is not Zipf-like. A numberof models have been proposed to explain the observed mediaaess patterns, suh as the generalized Zipf-like model [7℄,�feth-at-most-one� model [4℄, and two-mode Zipf model [6℄.However, eah of these models an only explain a very limitedsope of measurement results. A general model of Internetmedia aess patterns is highly desirable for tra� engineer-ing on the Internet and is ritial to design, benhmark, andevaluate Internet media delivery systems.In this study, we have analyzed a wide variety of mediaworkloads on the Internet. The workloads were olleted fromboth the lient side and the server side in Web, VoD, P2P,and live streaming environments between 1998 and 2006. Theduration of these workloads ranges from a few days to morethan two years and the user population ranges from severalthousands to more than one hundred thousand. The numberof lient requests ranges from tens of thousands to hundreds
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of million, and the number of objets in eah workload rangesfrom several hundreds to several million. Through extensiveanalysis, we �nd that the referene ranks of media objetsin all sixteen workloads follow the strethed exponential(SE) distribution, and a biased measurement may lead toa Zipf-like observation on media aess patterns. With suha request pattern, the temporal loality in media systems ishard to exploit by lient-server based ahing systems. Thestrethed exponential model implies that peer-to-peer ollab-orative ahing systems an e�etively deliver Internet mediaontent. Current tehnology advanements suh as PPLiveand BitTorrent have demonstrated the strong advantages ofP2P ollaboration on the delivery of Internet media ontent.
2. THE STRETCHED EXPONENTIAL DIS-

TRIBUTION OF MEDIA TRAFFICFigures 1(a), 1(b), 1(), and 1(d) show the referene rankdistributions of media objets in typial Web, VoD, P2P, andLive media systems, respetively. In eah �gure, the x oor-dinate represents the referene rank of eah objet, plottedin log sale, while the y oordinate represents the number ofreferenes to this objet, plotted in both log sale (markedon the right of y-axis) and a powered sale (by a onstant
c, as marked on the left of y-axis). These �gures show thatthe referene rank distributions of all these workloads annotbe �tted with a straight line in a log-log sale, meaning theyare not Zipf-like. Instead, by seleting a proper onstant c,all these workloads an be well �tted with a straight line inlog-yc sale. Suh a distribution is alled a strethed exponen-tial distribution. As marked in the �gures, the oe�ient ofdetermination of the strethed exponential �tting result, R2,is very lose to 1 for all workloads.The umulative probability funtion of a strethed expo-nential distribution an be expressed as

P (X < x) = 1 − e
−( x

x0
)c

, (1)where c and x0 are onstants. If we rank the N objets inthe workload in desending order of their referene numbers
yi (1 ≤ i ≤ N), we have P (yn > yi) = i/N . So the referenerank distribution an be expressed as follows

yc

i = −a log i + b (1 ≤ i ≤ N), (2)where a = xc

0 and b = yc

1. Sine b is a normalization param-eter, the shape of an SE distribution is determined by c, thestreth fator of y oordinate, and a, the slope of the straightline in log-yc sale.For on-demand media systems, the streth fator c of theobjet referene rank distribution is highly related with the
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(d) Live media systemFigure 1: Referene rank distributions of di�erent kinds of media systemssizes of �les in the system. In general, for media workloads de-livered by similar kinds of systems or tehniques, the strethfators of their orresponding objet referene rank distribu-tions inrease with their median �le sizes; for workloads withsimilar median �le sizes, the streth fators of their orre-sponding objet referene rank distributions are similar re-gardless of their underlying media systems and delivery teh-niques. Furthermore, for objets aessed in di�erent timeperiods in a media system with roughly onstant objet birthrate, the streth fator c of orresponding referene rank dis-tributions is a time-invariant onstant.For media systems with roughly onstant request rates andobjet birth rates over time, the parameter a (the slope of theSE line in log-yc sale) of the objet referene rank distribu-tion inreases with its streth fator c and the average numberof requests per objet in the workload. Furthermore, due tothe inrease of the average number of requests per objet overtime, parameter a inreases with the length of the workloadduration gradually but onverges to a onstant, whih is de-termined by the ratio of the media request rate to the objetbirth rate and the streth fator c.For a strethed exponential referene rank distribution withslope a in log-yc sale and total N objets, the di�erene be-tween this distribution and its orresponding Zipf-like modelin log-log sale inreases with a log N . For a workload withlarge media �les, both the average number of requests perobjet and the streth fator c are large. Thus a is large, andthe di�erene between its referene rank distribution and theorresponding Zipf-like model is large. For a workload withsmall media �les, the di�erene between its referene rank dis-tribution and the orresponding Zipf-like model is also largewhen the workload duration is long enough (at least monthsto years).
3. IMPLICATIONS ON MEDIA CACHINGInternet media objets ommonly have long lifespans be-ause they are seldom updated and have low prodution ratesompared to Web objets. Most requested media objets arereated long time ago, and most media requests are for ob-jets reated long time ago. For example, for a media work-load olleted at a large residential able network in 2005,more than 50% requested objets are reated at least 250days ago, and more than 50% requests are for objets olderthan 150 days.The temporal loality in a omputer system omes fromthe onentration and orrelation of requests to the ontentin the system. During a short period suh as one week, thepopularity of media objets is almost stationary, thus the

temporal loality mainly omes from the request onentra-tion. We have modeled the optimal hit ratios of typial shortterm media workloads and Web workloads, where requestonentration dominates the temporal loality. In suh ases,ahing of media (SE) workload is far less e�ient than thatof Web (Zipf) workload. For example, assuming all objetsare ahable and have the same �le size, ahing 1% Webontent an ahieve about 40% hit radio, while ahing 1%media ontent an only ahieve 18% hit ratio, even thoughthey have the same hit ratio with an unlimited ahe.Nevertheless, the request onentration in a media work-load (parameter a) inreases with time. Furthermore, dueto the long lifespan of media objets, the request orrelationbeomes important with time. With a muh higher temporalloality, long-term ahing an have a high hit ratio greaterthan 85% with ahing 10% ontent. However, it may takemonths to years and a huge amount of storage to ahievesuh an improvement, for whih peer-to-peer tehniques anbe muh e�etive.
4. CONCLUSIONOur study shows that Internet media aess patterns fol-low the strethed exponential distribution. Thus, the perfor-mane of media ahing with a lient-server model is far lesse�etive than that of Web ontent ahing. The strethed ex-ponential distribution lays out an analytial foundation to es-tablish peer-to-peer ahing systems for delivering the rapidlyinreasing Internet media ontent.
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