
Catching Instant Messaging Worms with Change-Point
Detection Techniques

Guanhua Yan† Zhen Xiao‡ Stephan Eidenbenz†

† Information Sciences (CCS-3)∗ ‡ School of Electronics Engineering & Computer Science
Los Alamos National Laboratory Peking University

Los Alamos, NM 87545, USA Beijing, P. R. China
{ghyan, eidenben}@lanl.gov xiaozhen@net.pku.edu.cn

Abstract

Instant messaging (IM) systems have gained a lot of pop-
ularity in recent years. The increasing number of IM
users has lured malware authors to develop more worms
and viruses that spread in IM networks. In response to
such growing security threat to IM systems, it is impera-
tive to develop a fast and responsive IM worm detection
system. In this paper, we apply change-point detection
techniques to catch two families of IM worms, one aimed
at infecting all vulnerable machines as quickly as possi-
ble and the other aimed at spreading slowly in a stealthy
fashion to evade detection. Experimental results demon-
strate that the proposed solutions are very effective in de-
tecting both families of IM worms.

1 Introduction

Instant messaging (IM) systems have grown tremen-
dously in the past few years. It is estimated that the
total number of active IM accounts will increase from
867 million by the end of 2005 to 1.2 billion by 2009 [5]
and the number of enterprise IM users will increase from
67 million in 2007 to 127 million in 2011 [6]. Accompa-
nied with such increasing popularity of IM systems is the
growing security threat that IM malware poses to both
residential and enterprise IM users. For instance, from
January 1, 2005 through September 2005, more than 360
new IM worms have surfaced [8]. According to a report
from Akonix Systems Inc., there have been 346 IM at-
tacks in 2007 [4]. In 2005, Reuters was even forced to
shut down its instant messaging service temporarily due
to the Kelvir IM worm [16].

IM worms have posed significant challenges to secu-
rity protection for enterprise-like networks. IM worms
can be leveraged to implant rootkits or bots onto victim
machines inside an enterprise network after traditional

∗Los Alamos National Laboratory Publication No. LA-UR-08-
1010

perimeter protections such as firewalls have been by-
passed. The two major propagation vectors of IM worms
arefile transfersandURL-embedded chat messages. An
IM worm using the first approach (e.g., Sumom.a [19])
requests transferring a file, which contains the worm
code, to an online buddy; in the second approach, an IM
worm (e.g., Kelvir.k [7]) sends a hyperlink, which is em-
bedded in a text chat message, to an online buddy. If the
receiver accepts the file transfer request or clicks the em-
bedded URL, a malicious file will be downloaded onto
her machine and its execution creates a new infection.

Outbreaks of traditional Internet worms such as Code
Red tell us that any effective defense scheme against an
epidemic spreading requires a fast and responsive alert
system [18]. Motivated by this, we propose to apply
change-point detection techniques to detect two fami-
lies of IM worms quickly. The first family of IM worms
aim to infect all vulnerable machines as quickly as pos-
sible by aggressively hunting for new victims. We detect
this type of IM worms by monitoring abrupt increase of
file transfer requests or URL-embedded chat messages
in the IM system. The second family of IM worms al-
low only a limited number of infection attempts within a
certain period of time. Although spreading more slowly,
this type of IM worms do not trigger a large number of
file transfer requests or URL-embedded chat messages.
Our detection scheme relies on the observation that dif-
ferent degrees of social online intimacy among IM bud-
dies lead to uneven communication messages exchanged
among them. An IM worm that randomly chooses on-
line buddies as infection victims can, very likely, gen-
erate file transfer requests or URL-embedded chat mes-
sages between IM buddies that barely chat in the past.
To detect this type of IM worms, we measure the average
log-likelihood of file transfer requests or URL-embedded
chat messages in the IM system; its abrupt decrease is a
good indication of stealthy IM worm propagation. We
evaluate our detection schemes with an IM dataset col-
lected from a large enterprise network and experimental

1

results show that they are very effective in detecting both
families of IM worms.

The remainder of this paper is organized as follows.
Section 2 presents some background knowledge about
IM architecture and IM worms. Section 3 discusses IM
worms that aggressively scan for new victims and their
detection. Section 4 discusses how an intelligent IM
worm evades the detection scheme described in Section
3. In this section, we also provide an algorithm that de-
tects this type of IM worms. In Section 5, we evalu-
ate the effectiveness of the proposed solutions with an
IM dataset collected from a large corporate network. We
present some related work in Section 6 and conclude this
paper in Section 7.

2 IM Architectures and IM Worms

IM architectures. Popular IM systems include MSN
messenger, AIM, Yahoo Messenger, IRC, ICQ, and
Google Talk. Although these systems are built on dif-
ferent protocols, they bear little difference in their ba-
sic client-server structures. The general framework of an
IM system in an enterprise-like network is depicted in
Fig. 1. IM servers form the backbone of an IM system
and their typical functionalities include account man-
agement, user authentication, presence notification, text-
based chat message relaying, file transfer establishment,
and group chatting. Albeit major IM systems provide
similar functionalities, their server architectures may dif-
fer from each other. For instance, a text-based chat mes-
sage in the AIM system has to go through two BOS (Ba-
sic Oscar Services) servers before it is delivered to the
receiver, but a similar message in the MSN system tra-
verses only one SB (switchboard) server [23].

IM

Client

IM

Client

Gateway

IM

Client

IM

Servers

Internet

A B C

Enterprise

Network

Figure 1: Architecture of a typical IM system

In our work, we focus on schemes that detect IM worm
propagation in a centralized fashion. More specifically,
we consider approaches that can be directly deployed at
the IM servers, or at the enterprise gateway if the goal is
to protect an enterprise network. The feasibility of such
a solution requires further explanation. Encryption is
rarely used in existing major IM systems, suggesting IM
servers or enterprise gateways can see most text-based

chat messages delivered through them. Hence, if an IM
worm uses the URL-embedded chat messages to spread
itself, the IM servers or the enterprise gateway can parse
unencrypted chat messages and derive the URL informa-
tion. However, the IM servers or the enterprise gateway
can not capture the file being transferred between two
IM clients, unless the sender and receiver are both pro-
tected by a firewall or NAT router [23]. Hence, if an IM
worm propagates through file transfers, we may not be
able to detect IM worm propagation through binary mal-
ware code analysis at the enterprise gateway or the IM
servers. Nevertheless, any file transfer between two IM
clients must involve some IM servers to set up their ini-
tial connection, so we can still infer that a file transfer is
going to take place between two IM clients by analyzing
IM command traffic at the enterprise gateway or the IM
servers.

IM worms. An infection attempt through an IM net-
work consists of two processes:handshakinganddown-
loading. In the handshaking step, an infected machine
with IM account u requests a file transfer or sends a
URL-embedded chat message tou’s online buddyv.
When IM userv receives the file transfer request or the
URL-embedded chat message, she decides whether to
accept the request or click on the URL. Only if she does
so will the next step take place: the recipient machine
downloads the worm code body from the machine that
u is using if the file transfer scheme is used, or from
the host specified by the URL if the worm spreads by
URL-embedded chat messages. Once the second step
finishes, the recipient machine gets infected if it is vul-
nerable to the worm infection; otherwise, the infection
attempt fails.

We useTh andTd to denote the durations of the hand-
shaking step and the downloading step, respectively. We
also useTe to denote the time needed to execute the
worm code on a victim machine, e.g., modifying the reg-
istry on a Windows machine. LetPd be the probabil-
ity that a node accepts a file transfer request or clicks
on the embedded URL.Pd essentially reflects the proba-
bility that the worm spreading attempt succeeds in each
hop. We also usePv to denote the probability that a node
is vulnerable to the worm infection after the worm code
body is downloaded.

3 Fast Scanning IM Worms

Many existing IM worms adopt the fast scanning strat-
egy, that is, they, after infecting a new host, immediately
iterate the online buddy list and attempt to infect each
contact on it either by requesting a file transfer or sending
out a URL-embedded chat message. Such IM worms in-
clude Bropia and Kelvir that have been observed spread-
ing on the MSN IM network. The common objective of

2

fast scanning IM worms is to infect all vulnerable ma-
chines as quickly as possible. Experiences with tradi-
tional Internet worms such as Code Red and Slammer
suggest that an effective defense scheme against a fast
scanning worm must detect it at its early propagation
stage [18].

Algorithm description. The aggressive spreading
strategy used by fast scanning IM worms, although accel-
erating their propagation, inevitably increases the num-
ber of file transfer requests or URL-embedded chat mes-
sages in the IM systems, depending on their infection
vectors. Moreover, these file transfer requests or URL-
embedded text messages introduced by fast scanning IM
worms bear different source-destination pairs. Such a
distinguishing feature of fast scanning IM worms moti-
vates us to apply sequential change detection theory for
their detection. The key idea of sequential change detec-
tion theory is to locate the point of change, if it occurs,
within an observed time series by checking whether it
is statistically homogeneous in an online fashion. Fur-
ther explanation requires more notations. We discretize
time into measurement windows of equal lengthδ1, de-
noted by{∆(1)

n }|n∈N. We use random sequenceC(f) =

{C(f)
n }|n∈N andC(u) = {C(u)

n }|n∈N to denote the to-
tal number of file transfer requests and URL-embedded
chat messages with different source-destination pairs that
have been observed within then-th measurement win-
dow, respectively.

To detect fast scanning IM worms, we use the
CUSUM algorithm [14], which is a standard tool in
statistical process control. Particularly, we apply its
non-parametric version [1] as it does not demand any
a priori information on distributions of the random se-
quence before and/or after the change point. LetX =
{Xn}|n∈N be a random sequence with meanα(X) un-
der normal operation. Our goal is to detect whether there
is an abrupt change of mean in{Xn}. As the non-
parametric CUSUM algorithm only works on random
sequences with negative means before the change point
and positive means after the change point, we transform
{Xn}|n∈N into a new random sequence{Z(Xn)}|n∈N,
whereZ(Xn) = Xn − β(X), β(X) is a constant de-
pending on random processX, andα(X) < β(X).

The non-parametric CUSUM algorithm works as fol-
lows. First we define sequence{yn}|n∈N+ :

yn(X) = Sn(X) − min
0≤k≤n

Sk(X), (1)

whereSk(X) =
∑k

i=1 Z(Xi) andS0(X) = 0. We can
calculate{yn} more efficiently in a recursive manner:

{

yn(X) = max{0, yn−1(X) + Z(Xn)},
y0(X) = 0,

(2)

In this way,yn(X) can be immediately computed based
on yn−1(X) once measurementXn is available. There-
after, we decide whether there is an abrupt change at time

n by comparingyn(X) against a predefined threshold
θ(X): if yn(X) ≤ θ(X), there is no abrupt change of
mean in random sequenceX; otherwise, there is.

One might suggest that we apply the CUSUM algo-
rithm directly on random sequence{C(f)

n } or {C(u)
n } to

detect fast scanning IM worms spreading by file transfers
or URL-embedded chat messages. A basic assumption of
the CUSUM algorithm, however, is that the process be-
fore the change point should be stationary. It is easy to
see that both random sequences{C(f)

n } are{C(u)
n } vary

with the number of online users, which typically changes
over the time in a day. For instance, measurements of IM
traffic in a large corporate network reveal that the peak
times of user login and user logout are around 9AM and
5PM, respectively, which are strongly correlated with
employees’ working hours [23]. If we attempt to detect a
fast scanning IM worm quickly by selecting a measure-
ment windowδ1 much smaller than a day, applying the
CUSUM algorithm directly on random sequence{C(f)

n }
or {C(u)

n } may lead to high false alarm rates.

To circumvent this problem, we measure another ran-
dom processM = {Mn}, in which Mn is the number
of online IM users within then-th measurement window
∆

(1)
n . Instead of detecting abrupt changes on{C(f)

n } or
{C(u)

n } directly, we normalize them byMn first before
applying the CUSUM algorithm. Algorithm 1 provides a
brief overview of our solution to detecting fast scanning
IM worms:

Algorithm 1 Detect fast scanning IM worms within the
n-th measurement window∆(1)

n

1: CollectMn, C
(f)
n , andC

(u)
n

2: if Mn is 0 then
3: Ignore this measurement window
4: end if
5: Updateyn(C(f)

M
) andyn(C(u)

M
) according to Eq. (2)

6: if yn(C(f)

M
) > θ(C(f)

M
) then

7: Alert that a fast scanning IM worm is propagating
by file transfers

8: end if
9: if yn(C(u)

M
) > θ(C(u)

M
) then

10: Alert that a fast scanning IM worm is propagating
by URL-embedded chat messages

11: end if

When implementing Algorithm 1, if there are no on-
line IM users (i.e.,Mn = 0), we ignore this measure-
ment window, which means that the next measurement
window is still then-th measurement window.

Parameter configuration. We set the model pa-
rameters in a similar way as in [21]. First,α(C(f)

M
) and

3

α(C(u)

M
) can be estimated from training data. Define:

γ(X) = inf{n : yn(X) > θ(X)} (3)

ρ(X) =
max{0, γ(X) − m}

θ(X)
(4)

wherem is the time when the worm starts to propagate,
X is either C(f)

M
or C(u)

M
, γ(X) denotes the time of the

change point, andρ(X) is the normalized detection time
after the change point. Leth(X) be the increase of mean
after the IM worm starts to propagate. We then have:

ρ(X) → 1

h(X) − |α(X) − β(X)| . (5)

By choosingh′(X), which is a lower bound ofh(X), to
replaceh(X), we can setθ(X) as follows:

θ(X) = max{0, γ(X)−m}·(h′(X)−|α(X)−β(X)|).
(6)

Similar to [21], we leth′(X) be2|α(X)−β(X)|. Recall
that β(X) is an upper bound ofα(X); hence, we can
chooseβ(X) to be(1 + ǫ)α(X), whereǫ is a positive
number. We also specifymax{0, γ(X)−m} as the target
detection delayd. We thus have:

θ(X) = dǫα(X). (7)

Algorithm analysis. We now analyze how effective
the CUSUM algorithm is in detecting fast scanning IM
worms. We assume that a machine attempts to spread
the worm onto its online IM buddies immediately after
it gets infected. For simplicity, we also assume that at
the initial propagation stage, the number of buddies that
have already been infected can be ignored. Letl be the
average number of online users andm be the average
number of online buddies of each online user in the IM
network when the IM worm is spreading. When an in-
fected machine attempts to spread the worm ontom on-
line buddies,m ·Pd of them actually download the worm
code. We assume that the worm downloading time is
Td

1. Hence, if an infected machine initiates a success-
ful infection attempt to an online buddy at timet, the
victim machine is infected at timet + Th + Td + Te.
Among them online buddies, an infected machine can
only infect mPdPv of them successfully. Letκ be the

1Here, we ignore the network-level interaction among multipleses-
sions that download worm code from the same infected host. This is
because typical IM worms have small sizes, especially after packing
themselves when spreading. For instance, the code size of Kelvir IM
worm is about 24KB, if unpacked, or 9KB if packed [20]. Hence,us-
ing TCP, typical IM worm code can be downloaded within only a few
round trip times and thus less than one second. Moreover, receivers
of file transfer requests think for different time before theydecide to
download the worm code. Such stochasticity also reduces thesyn-
chrony among worm code downloading processes that are initiated by
the same worm instance.

number of worm generations before the worm is detected
by the CUSUM algorithm. The number of infected ma-
chines in thei-th worm generation, where1 ≤ i ≤ κ, is
(mPdPv)i−1. Suppose that the IM worm starts to spread
at the beginning of measurement window∆(1)

a and the
IM worm is detected at the end of measurement window
∆

(1)
b . We then have:

(κ−1)(Th+Td+Te) ≤ (b−a+1)δ1 < κ(Th+Td+Te).
(8)

Therefore,κ can be represented as:

κ = ⌊ (b − a + 1)δ1

Th + Td + Te

+ 1⌋. (9)

Moreover,yb(X), whereX is C(f)

M
or C(u)

M
, can be ap-

proximated as follows:

yb(X) ≈ (b − a + 1)(α(X) − β(X)) +

m(1 + (mPdPv)
1 + ... + (mPdPv)κ−1)

l
= (b − a + 1)(α(X) − β(X)) +

m((mPdPv)κ − 1)

l(mPdPv − 1)

As we haveyb(X) > θ(X) andyb−1(X) ≤ θ(X), we
can estimateb − a + 1, which is the number of mea-
surement windows required to detect the fast scanning
IM worm. First, suppose thatyb−1(X) ≈ θ(X) and
κ ≈ (b−a+1)δ1

Th+Td+Te
+ 0.5. Let x be b − a, g be mPdPv,

andr be δ1

Th+Td+Te
. We then have:

x(α(X) − β(X)) +
m(grx+0.5 − 1)

l(g − 1)
≈ θ(X) (10)

As it is difficult to solve the above equation analytically,
we use Taylor approximation forgrx. Although it is pos-
sible to use Taylor series of orders higher than one, the
solution becomes lengthy. Hence, we use the first-order
Taylor series at point 0, i.e.,1+rln(g)·x, to approximate
it. Finally, we have:

x ≈ l(g − 1)θ(X) + m(1 −√
g)

l(g − 1)(α(X) − β(X)) + mrln(g)
√

g
. (11)

We can thus establish the following theorem:

Theorem 1 Given the assumptions we have made, Algo.
1 needs approximately[x] + 1 measurement windows to
detect the fast scanning IM worm, wherex is given in Eq.
(11).

From Eq. (11), we observe that ifθ(X) is high, or
β(X) is chosen much larger thanα(X), it takes a longer
time to detect the fast scanning IM worm, which is con-
sistent with our intuition.

4

Implementation. If Algorithm 1 is implemented by
the IM servers, it needs to know the online status of each
IM user. Such information is already available because
the IM servers need to notify an IM user of each buddy’s
presence status when she just logs into the IM system.
If Algorithm 1 is implemented at the enterprise gateway,
there are two ways of keeping the online status of each
internal IM user. One is to intercept every IM command
that carries the presence information of an IM user. The
second approach is to monitor the persistent TCP con-
nections between the IM user and some IM servers, such
as the BOS server in the AIM system and the notification
server in the MSN system [23]: if such TCP connections
are still alive, the corresponding IM user is online.

4 Self-Restraining IM Worms

Security by obscurity is never a good practice. If an ad-
versary knows that Algorithm 1 has been deployed to de-
tect IM worms, can he design an intelligent IM worm that
spreads without being caught? We demonstrate its possi-
bility in the following discussion. Note that the CUSUM
algorithm triggers an alarm only when the cumulative
sum reaches thresholdθ(X); this allows an IM worm
to ramp up its infection coverage using the fast scanning
strategy to a certain point without being detected. After
that, the difference betweenα(X) andβ(X) allows the
IM worm to spread at a constant speed without increas-
ing yn(X). Following the scenario analyzed in Section
3, an adversary estimatesx according to Eq. (11) and
predicts that a fast scanning IM is detected after[x] + 1
measurement windows. To avoid detection, the IM worm
is designed to stop propagating in a fast scanning mode
afterκ′ generations, where:

κ′ = ⌊ (x′ + 1)δ1

Th + Td + Te

+ 1⌋ (12)

andx′ < x.
Since (x′ + 1)-th measurement window, the worm

spreads in a self-restraining manner. If the number of
file transfer requests or URL-embedded chat messages
per measurement window generated by the worm does
not exceedl(β(X) − α(X)), it is highly likely that the
worm propagates without triggering an alarm. We now
show how an intelligent IM worm can achieve this using
a token-based approach. Note that the number of infected
machines in theκ′-th generation isgκ′−1, where we re-
call g = mPdPv. Let Υ be l(β(X) − α(X)). After a
κ′-th worm instance is created,Υ

gκ′−1 tokens are gener-

ated for it2.
2In one implementation,⌊ Υ

gκ′−1
⌋ tokens are created deterministi-

cally and another one is created with probabilityΥ
gκ′−1

−⌊ Υ

gκ′−1
⌋. If

the protocol is implemented as such, the following Theorem 2 maynot
strictly follow due to randomness.

The color of a token can begreenor red. Initially,
we set the colors of all tokens to green. The protocol
works as follows: (1) If the color of a token changes
to green, the holding worm instance randomly chooses
a new victim that it has never tried to infect from the
online IM buddy list and then attempts to infect it. If
the holding worm instance cannot find an online buddy
contact that has never been tried, it passes the green to-
ken to a random online buddy that it knows has already
been infected, or to the machine from which it gets in-
fected3; otherwise, it changes the color of the token to
red, inscribes the current time onto the token, and sched-
ules anactivation timerwhich fires afterδ1 time units
since the timestamp on the token.(2) When an activation
timer fires, the associated token changes to green and the
holding worm instance proceeds as in (1).(3) If a worm
instance successfully infects a new machine, it cancels
any of its red tokens, if it has such one, and passes it
to the new machine without altering its inscribed times-
tamp. (4) When a worm instance receives a red token
with time stampt0, it schedules an activation timer after
timeδ1−(t−t0), wheret is the current time.(5) When a
worm instance receives a green token, it proceeds in the
same way as in (1). We can easily establish the following
property of the token-based protocol (proof omitted due
to space limitation):

Theorem 2 The token-based protocol guarantees that
within any time interval of lengthδ1 since the lastκ′-
th generation worm instance has been installed, the total
number of file transfer requests or URL-embedded chat
messages generated by the worm is at mostΥ.

Algorithm description. We call intelligent IM worms
that use rate limiting methods such as the token-based
protocolself-restraining IM worms. To detect such type
of IM worms, monitoring surges of file transfer requests
or URL-embedded chat messages in the IM system is
not sufficient. Instead, we measure likelihoods of file
transfers or URL-embedded chat messages between IM
clients and use them to decide whether a self-restraining
IM worm is spreading. This idea is based on the mea-
surements on IM messages in a large corporate network:
on average, an AIM user chats with only 1.9 buddies,
about 7% on her buddy list, and an MSN user chats
with 5.5 buddies, 25% on her buddy list, in a month
[23]. Such an observation suggests that an IM user tends
to chat more often with a small set of her online bud-
dies, which reflects her online social intimacy. However,

3We suppose that once a new machine is infected, it reports to the
machine that infects it. If the worm spreads by file transfers,the sender
and the receiver know each other’s IP address. But if the wormspreads
by URL-embedded chat messages, the sender and the receiver may not
know each other’s IP address. But such information can be relayed by
the remote server where the worm code resides.

5

self-restraining IM worms as described do not have that
knowledge about social relationships between IM users.
Hence, when an IM worm instance chooses a victim from
the online buddy list, it randomly picks one from those
that have not been attempted before. As such random-
ness may not reflect real-world online social intimacy, it
offers a weakness for their detection.

Similar to Algorithm 1, we discretize time into mea-
surement windows of equal lengthδ2, denoted by
{∆(2)

n }|n∈N. δ2 is not necessarily equal toδ1. Let W (f)
n

andW
(u)
n denote the set of IM user pairs〈a, b〉, where IM

usera sends at least one file transfer request and at least
one URL-embedded chat message to IM userb within
measurement window∆(2)

n , respectively. We also use
π(a, b) to denote the metric that reflects how close IM
userb is to IM usera in the IM world. Essentially,π(a, b)
is the probability that IM usera sends a chat message or
a file transfer request tob in the history. LetQ be the
whole set of IM users. We have:

∑

∀b∈Q

π(a, b) = 1, for anya ∈ Q (13)

We use the EWMA (exponentially weighted moving av-
erage) approach to updateπ(a, b). First, we discretize
time into intervals of the same length. A time interval
here can represent, for instance, a week. Letπi(a, b) de-
note theπ(a, b) value estimated after thei-th time inter-
val andπ̃i(a, b) denote the fraction of chat messages or
file transfer requests that are sent froma to b during the
i-th time interval. We then updateπi(a, b) as follows:

πi(a, b) = ϕπ̃i(a, b) + (1 − ϕ)πi−1(a, b), (14)

whereϕ ∈ [0, 1] is the weighting factor. It is trivial to
verify that Eq. (13) must be true for anya ∈ Q and
i > 1 if initially

∑

∀b∈Q π0(a, b) is equal to 1.

We define sequencesJ (f) = {J (f)
n }|n∈N andJ (u) =

{J (u)
n }|n∈N as follows:

J
(f)
n =

−
P

〈a,b〉∈W
(f)
n

ln max{π̂,π(a,b)}

|W
(f)
n |

J
(u)
n =

−
P

〈a,b〉∈W
(u)
n

ln max{π̂,π(a,b)}

|W
(u)
n |

(15)

whereπ̂ ∈ (0, 1). −J
(f)
n and−J

(u)
n give the average log-

likelihood of file transfer requests and URL-embedded
chat messages within measurement window∆

(2)
n , re-

spectively. In Eq. (15), we use the minimum ofπ̂ and
π(a, b) in case that the latter is 0.

We then monitor abrupt change ofJ
(f)
n andJ

(u)
n to

detect self-restraining IM worms:
Parameters in Algorithm 2 are specified in a similar

manner as in Algorithm 1. For brevity, we do not repli-
cate it here.

Algorithm 2 Detect self-restraining IM worms within
then-th measurement window∆(2)

n

1: CollectJ (f)
n andJ

(u)
n

2: Updateyn(J
(f)
n) andyn(J

(u)
n) according to Eq. (2)

3: if yn(J
(f)
n) > θ(J

(f)
n) then

4: Alert that a self-restraining IM worm using file
transfer method is propagating

5: end if
6: if yn(J

(u)
n) > θ(J

(u)
n) then

7: Alert that a self-restraining IM worm using URL-
embedding method is propagating

8: end if

Algorithm analysis. We consider the self-restraining
IM worm that uses the token-based scheme to control
its propagation speed. The total number of tokens is
Υ. We assume that at the initial stage of worm propa-
gation, each worm instance has received at most one to-
ken4. Also let the number of online buddies per user be
m. To ease analysis, we further assume that under nor-
mal conditions, the nominators and denominators in Eq.
(15) are constant. That is,

J
(f)
n = B(J(f))

A(J(f))

J
(u)
n = B(J(u))

A(J(u))

(16)

whereA(J (f)), B(J (f)), A(J (u)), andB(J (u)) are con-
stants. Suppose that the self-restraining IM worm starts
propagating at the beginning of thei-th measurement
window and Algorithm 2 detects it afterz measurement
windows. We ignore the cases in which the worm sends
a file transfer request or a URL-embedded chat message
from u to v but there is also a normal file transfer request
or URL-embedded chat message fromu andv. This is
a reasonable assumption because the infection attempts
by a self-restraining IM worm are usually small (other-
wise, Algorithm 1 can detect it). Suppose that we choose
a smallπ̂ such that it is smaller than1/m. We then have:

z ·
− δ2Υ

Th+Td+Te
ln(1

m
) + B(X)

δ2Υ
Th+Td+Te

+ A(X)
− z · β(X) > θ(X),

(17)
whereX is J (f) or J (u), depending on the spreading
vector of the IM worm. Hence, the CUSUM algorithm is
able to detect the self-restraining IM worm afterz mea-

4If a worm instance has received more than one token, the worm
instance will not attempt to infect the buddies that it has already tried.
This may not hold for theκ′-th generation worm instances if Υ

gκ′−1
>

1, but after that, it is very likely that tokens are passed ontodifferent
IM users.

6

surement windows, where

z = ⌈ θ(X)

−
δ2Υ

Th+Td+Te
ln(1

m
)+B(X)

δ2Υ
Th+Td+Te

+A(X)
− β(X)

⌉. (18)

We can thus establish the following theorem:

Theorem 3 Given the assumptions we have made, Algo-
rithm 2 needs approximatelyz measurement windows to
detect the self-restraining IM worm, wherez is given in
Eq. (18).

From Eq. (18), it is clear that a too largeθ(X) or
β(X) extends the detection period. But in reality,A(X)
andB(X) change over time. Hence, makingθ(X) or
β(X) too small can introduce high false alarm rates.

Implementation. One implementation issue with the
aforementioned algorithm is the complexity of collect-
ing J

(f)
n and J

(u)
n . The algorithm requires knowledge

of buddy relationships in the IM system. If the algo-
rithm is implemented at the IM servers, such knowledge
is already available, as the IM servers need it to notify
an IM client of the presence statuses of her buddies if
they change. For instance, in the AIM system, when
an IM user logs in, the client software sends a list of
her IM buddies in screen names to the message server;
these names will be monitored for login/logout events.
If the detection algorithm is implemented at the enter-
prise gateway, we need to parse IM command messages
to derive buddy relationships. For instance, the detec-
tion algorithm designed for the AIM system can capture
the “oncoming buddy” commands at the enterprise gate-
way that appear in the following three cases: first, the
AIM messenger server notifies each user of the statuses
of her buddies when she is logging into the system; sec-
ond, whenever one of the buddies comes online after a
user logged in, she gets a notification from the servers;
third, the IM servers regularly use these commands to
update the buddy list of each user [13].

Algorithm 2 also requires knowledge ofπ(a, b) from
each online IM usera to each of her buddiesb. As text-
based chat messages and file transfer requests go through
IM servers, we can calculateπ(a, b) by parsing IM chat
messages or IM command messages for setting up file
transfers at the IM servers or the enterprise gateway.

5 Experimental Evaluation

We use a realistic MSN IM messaging dataset to eval-
uate the effectiveness of our algorithms in detecting IM
worms. This dataset, collected from a large corporate
network, records chat messages of internal IM users and
their online durations within a year. Our experiments are
based on part of this dataset that has ten weeks’ records.

This subset has 193 internal IM users; on average, each
of them has 22 IM buddies. In total, 3851 external IM
contacts appear on the buddy lists of these 193 inter-
nal IM users. Unfortunately, we cannot get the buddy
lists of these external IM users. As observed in [12, 17],
IM networks tend to have power-law structures. We use
the Power-Law Out-Degree Algorithm [15] to generate
power-law graphs with 3581 nodes, whose average out-
degree is 22. The power law exponent is set to be 1.7,
based on measurement results from [12, 17]. For sim-
plicity, we let the buddy relationships in the external
graph be symmetric. Furthermore, if an external user is
on the buddy list of an internal user, she also has that
internal user on her own buddy list.

In our experiments, we consider only IM worms that
are based on file transfers. Due to some technical prob-
lems, we are not able to obtain sufficient data on normal
file transfers between internal IM users or between in-
ternal IM users and external IM users as of writing. We
thus use measurement results from [10]: on average an
online IM user sends out 1.84 file transfer requests per
24 hours. Similarly, we assume that the average num-
ber of file transfer requires an IM user receives is also
1.84. For each file transfer request, the probability that
it falls into a time interval is proportional to the number
of online internal IM users; once the time interval is cho-
sen, its exact appearance time at the enterprise gateway
is uniformly distributed within that time interval.

Now we introduce how to generate the sender and re-
ceiver of a file transfer request if it is issued by an inter-
nal IM user. For each of the 193 internal IM users, we
build a buddy relationship table, an entry in which indi-
cates the probability that a chat message is sent from her
to the corresponding contact on her buddy list within the
current week (i.e., not history based). These probabili-
ties are empirically measured from the IM dataset. Let
π̃(u, v) denote the probability that a chat message goes
from internal IM useru to another IM userv. Also, we
measure the probability that an outbound chat message
(i.e., it is generated from an internal IM user) comes from
a specific internal IM useru, denoted byω(u). Then,
when a file transfer request sent by an internal IM user
is generated within a time interval, we first collect the
entire set of IM user pairs(u, v), whereu is an internal
IM user and both IM usersu andv are online during that
time interval. LetΦ be this set. Then, IM user pair(u, v)
is chosen with probabilityp(u, v):

p(u, v) =
ω(u) · π̃(u, v)

∑

(a,b)∈Φ ω(u) · π̃(a, b)
(19)

In the experiments, we assume that the delay in sec-
onds from one IM user to another obeys normal distribu-
tion N (0.1, 0.01) in seconds. The time that a recipient
of a file transfer request spends on deciding whether to

7

accept the request is exponentially distributed with mean
5 seconds. The downloading time is generated from nor-
mal distributionN (2, 1). We ignore the execution time
of downloaded malware in our experiments. We vary the
acceptance ratio of a file transfer request (i.e.,Pd) among
0.25, 0.5, 0.75, and 1.0. We also vary the vulnerable
probability of a machine (i.e.,Pv) among 0.25, 0.5, 0.75,
and 1.0.

For each simulation scenario, we randomly pick an IM
node, either internal or external, as the initial infection.
The first infection takes place at simulation time 42000
seconds5. For each simulation scenario, we run it 10
times with different random number generation seeds. In
our experiments, IM worm detection is performed at the
enterprise gateway.

5.1 Fast Scanning IM Worms

In Fig. 2, we present the growth curves of internal in-
fections (i.e., infected machines that are behind the en-
terprise gateway) when the IM worm uses the fast scan-
ning spreading strategy. Obviously, when the acceptance
ratio (i.e.,Pd) is fixed, a higher percentage of vulnera-
ble IM contacts leads to faster IM worm spreading; sim-
ilarly, when a fixed portion of IM contacts is vulnera-
ble, a higher acceptance ratio also accelerates IM worm
propagation. Both observations agree with our intuition.
Moreover, the maximum number of infected internal IM
contacts is bounded by the number of internal vulnera-
ble machines. This is confirmed in the right graph: the
number of internal infections is always less than 97 (re-
call that there are 193 internal IM users in our dataset).
However, this is not true when the acceptance ratio is
fixed at 50% and the vulnerable probability is 100%. It
is because an IM user can receive multiple file transfer
requests from different buddies and accepting any one of
them leads to a new infection.

We now investigate how effective Algorithm 1 is in
detecting these fast scanning IM worms. We let the mea-
surement window size be 300 seconds. The threshold
parameter is computed based on Eq. (7), in which we let
ǫ be 3 andd be 3. Here, we choose a relatively largeǫ
so that effects of white noise (e.g., bursts of normal file
transfer requests) can be offset. We first test the algo-
rithm when there is no IM worm spreading. No false
positives have been observed. We then test 160 sample
runs with 16 different combinations of vulnerable prob-
abilities and acceptance ratios. We find that there are
eight false negatives. A closer examination at the eight
false negatives reveals that in all of them either one (the
initial infection point) or two have been infected before
simulation time 250,000 seconds. Due to no widespread

5This initial infection time is carefully chosen so that thereare a
significant number of online IM users at that point.

worm propagation, Algorithm 1 cannot detect it based on
the number of file transfer requests observed.

Fig. 3 depicts the detection delay in terms of mea-
surement windows. For most of the scenarios, it takes
between one and three measurement windows to detect
the IM worm propagation. We, however, observe that
when both the acceptance ratio and vulnerable proba-
bility are low, it takes a significant number of measure-
ment windows to detect the IM worm. This is because
in these cases the IM worm propagates very slowly and
thus does not generate a large number of file transfer re-
quests within a single measurement window. This is fur-
ther confirmed in Fig. 4, which demonstrates the fraction
of internal IM contacts that are infected among all inter-
nal vulnerable machines when the IM worm is detected.
It is observed that for those cases with large detection de-
lays, the fraction of internal infections is below 10%. On
the other hand, when the vulnerable probability is 1.0,
the fraction of internal infections reaches between 15%
and 20% when the IM worm is detected, even though
it takes only one measurement window. In these cases,
we can accelerate IM worm detection by decreasing the
measurement window size.

5.2 Self-Restraining IM Worms

We now consider a self-restraining IM worm that lim-
its its spreading speed to evade detection by Algorithm
1. This worm allows only three infection attempts (i.e.,
file transfer requests in our experiments) every 300 sec-
onds. It uses the token-based protocol, as described in
Section 4, to control its propagation speed. Fig. 5 de-
picts the number of internal infections at simulation time
250,000 seconds as a function of acceptance ratio and
vulnerable probability. Compared against the fast scan-
ning IM worm, the self-restraining IM worm propagates
much more slowly. For instance, when the acceptance
ratio is 50% and the vulnerable probability is 75%, the
number of internal infections is only 9 after simulation
time 250,000 seconds, as opposed to 88 internal infec-
tions with the fast scanning spreading strategy.

Fig. 6 presents the successful detection ratio of the
self-restraining IM worm by Algorithm 1. Among 160
sample runs, Algorithm 1 can only catch 11 of them be-
fore simulation time 250,000 seconds. This leads to a
poor average detection ratio of 7%. The result is not
surprising because Algorithm 1 relies on the abrupt in-
crease of file transfer requests for detection but the self-
restraining IM worm generates only a limited number of
file transfer requests per measurement window.

We now evaluate the effectiveness of Algorithm 2 in
detecting self-restraining IM worms. The measurement
window δ2 used in this algorithm is also set to be 300
seconds. We let the weighting factorϕ be 0.25 in Eq.
(14) and parameter̂π be 10−9 in Eq. (15). Theπi pa-

8

 0

 50

 100

 150

 200

 0 50000 100000 150000 200000 250000

N
u

m
b

e
r

o
f

in
te

rn
a

l i
n

fe
ct

io
n

s

Simulation time (sec)

vulnerability prob 0.25
vulnerability prob 0.5

vulnerability prob 0.75
vulnerability prob 1.0

 0

 20

 40

 60

 80

 100

 0 50000 100000 150000 200000 250000

N
u

m
b

e
r

o
f

in
te

rn
a

l i
n

fe
ct

io
n

s

Simulation time (sec)

acceptance ratio 0.25
acceptance ratio 0.5

acceptance ratio 0.75
acceptance ratio 1.0

(1) Acceptance ratio = 0.5 (2) Vulnerable prob = 0.5

Figure 2: Growth curves of internal infections when the IM worm uses
the fast scanning spreading strategy

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0.25 0.5 0.75 1D
e
te

c
ti
o
n
 d

e
la

y
 (

m
e
a
s
u
re

m
e
n
t
w

in
d
o
w

s
)

Vulnerable probability

acceptance ratio 0.25
acceptance ratio 0.50
acceptance ratio 0.75
acceptance ratio 1.00

Figure 3: Detection delay in measure-
ment windows for fast scanning IM
worms

 0

 0.05

 0.1

 0.15

 0.2

 0.25 0.5 0.75 1 1.25

F
ra

c
ti
o
n
 o

f
in

te
rn

a
l
in

fe
c
ti
o
n
s

 a
t
d
e
te

c
ti
o
n
 t
im

e

Vulnerable probability

acceptance ratio 0.25
acceptance ratio 0.50
acceptance ratio 0.75
acceptance ratio 1.00

Figure 4: Fraction of internal infec-
tions at detection time for fast scan-
ning IM worms

 0

 5

 10

 15

 20

 25

 0.25
 0.5

 0.75
 1

 0.25

 0.5

 0.75

 1

 0

 5

 10

 15

 20

 25

Internal infections

acceptance ratio

vulnerable
 prob

Internal infections

Figure 5: Number of internal in-
fections with the self-restraining
spreading strategy

 0
 0.05
 0.1
 0.15
 0.2
 0.25
 0.3
 0.35
 0.4

 0.25
 0.5

 0.75
 1

 0.25

 0.5

 0.75

 1

 0

 0.1

 0.2

 0.3

 0.4

detection ratio

acceptance ratio

vulnerable
 prob

detection ratio

Figure 6: Detection ratio of self-
restraining IM worms with Algo-
rithm 1

rameter in Eq. (14) is updated every week. Similar to the
experiments in Section 5.1, we let bothǫ andd be 3.

The experimental results show that Algorithm 2 is able
to detect the propagation of the self-restraining IM worm
in all the 160 sample runs. Fig. 7 depicts the number of
measurement windows that are needed to detect the IM
worm under different combinations of acceptance ratios
and vulnerable probabilities. The average detection de-
lay is 16 measurement windows, which is equivalent to
one hour and 20 minutes. Fig. 8 gives the fraction of in-
ternal infections among all internal vulnerable machines
when the IM worm is detected. Obviously, only a small
fraction of internal IM contacts has been infected before
the IM worm is detected, suggesting that Algorithm 2 is
effective in detecting self-restraining IM worms at their
early stages.

6 Related Work

IM malware has posed significant security threats to
both residential and enterprise IM users. Mannan et
al. presented a survey on secure public instant mes-
saging in [9]. They later proposed to use limited throt-
tling and CAPTCHA-based challenge-response schemes
to defend against IM worms [10]; they also developed a
cryptographic protocol to further enhance authentication
and secure communications in public IM systems [11].
Smith analyzed a French language IM system and af-
ter observing the IM network is scale-free, he suggested

that IM worms can be effectively mitigated by disabling
the top few most connected IM accounts [17]. In [22],
Williamson et al. demonstrated the effectiveness of a
virus throttling algorithm against IM worm propagation.
Xie et al. proposed a framework called HoneyIM that
uses decoy IM accounts in normal users’ buddy lists to
detect IM propagation in enterprise-like networks [24].
Compared with previous solutions, our work focuses on
a centralized approach that leverages statistical metrics
collected from IM systems. As our solution does not re-
quire involvement of IM clients, it can be more easily
deployed than those distributed detection schemes such
as HoneyIM.

Applying change-point detection techniques to detect
network attacks is not a new idea. Wang et al. applied the
non-parametric CUSUM algorithm to detect TCP SYN
flooding attacks [21]. The CUSUM algorithm has also
been used to detect Internet worms in [2, 3]. IM worms
differ from traditional Internet worms such as Code Red
II and Slammer because they propagate in social IM net-
works. In our work, we demonstrate that the change-
point detection techniques are effective in catching IM
worms with different spreading strategies.

7 Conclusions And Future Work

In this paper, we have proposed to apply change-point
detection techniques to detect both fast scanning and
self-restraining IM worms. We monitor abrupt increase

9

 0

 5

 10

 15

 20

 25

 30

 0.25 0.5 0.75 1

D
e

te
c
ti
o

n
 d

e
la

y
 (

m
e

a
s
u

re
m

e
n

t
w

in
d

o
w

s
)

Vulnerable probability

acceptance ratio 0.25
acceptance ratio 0.50
acceptance ratio 0.75
acceptance ratio 1.00

Figure 7: Detection delay of self-restraining IM
worms with Algorithm 2

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.25 0.5 0.75 1

F
ra

c
ti
o

n
 o

f
in

te
rn

a
l
in

fe
c
ti
o

n
s

 a
t

d
e

te
c
ti
o

n
 t

im
e

Vulnerable probability

acceptance ratio 0.25
acceptance ratio 0.50
acceptance ratio 0.75
acceptance ratio 1.00

Figure 8: Fraction of internal infections at de-
tection time with Algorithm 2

of file transfer requests or URL-embedded chat messages
to detect fast scanning IM worms; we leverage social
intimacy of IM users to detect stealthy IM worms that
spread slowly. Experimental results show that the pro-
posed solutions are effective in detecting both families
of IM worms. We are currently developing algorithms
for detecting another type of stealthy IM worms, which
spread themselves between two online users only after
they observe some ongoing conversations between them.
In the future, we plan to evaluate the detection schemes
proposed in this paper against more realistic IM datasets.

References

[1] B. E. Brodsky and B. S. Darkhovsky.Nonparametric
Methods in Change Point Problems. Kluwer Academic
Publishers, 1993.

[2] T. Bu, A. Chen, S. V. Wiel, and T. Woo. Design and
evaluation of a fast and robust worm detection algorithm.
In Proceedings of IEEE Infocom’06, 2006.

[3] J. Chan, C. Leckie, and T. Peng. Hitlist worm detec-
tion using source ip address history. InProceedings
of Australian Telecommunication Networks and Applica-
tions Conference, 2006.

[4] IM security exploits explode in 2007.http://esj.
com/news/article.aspx?EditorialsID=
2945.

[5] http://www.internetnews.com/stats/
article.php/3521456.

[6] http://software.tekrati.com/research/
9512/.

[7] http://www.viruslist.com/en/viruses/
encyclopedia?virusid=78581.

[8] M. Landesman. Kelvir worm overview.
http://antivirus.about.com/od/
virusdescriptions/a/kelvirfam.htm.

[9] M. Mannan and P.C.v. Oorschot. Secure public instant
messaging: A survey. InProceedings of Privacy, Security
and Trust (PST’04), 2004.

[10] M. Mannan and P.C.v. Oorschot. On instanct messaging
worms, analysis, and countermeasures. InProceedings of
WORM’05, November 2005.

[11] M. Mannan and P.C.v. Oorschot. A protocol for secure
public instant messaging. financial cryptography and data
security. InProceedings of Financial Cryptography and
Data Security 2006 (FC’06), 2006.

[12] C. D. Morse and H. Wang. The structure of an in-
stance messenger network and its vulnerability to mali-
cious codes. InProceedings of ACM SIGCOMM 2005
Poster Session, August 2005.

[13] AIM/Oscar Protocol Specification. http://www.
oilcan.org/oscar/.

[14] E. S. Page. Continuous inspection schemes.Biometrika,
41, 1954.

[15] C. R. Palmer and J. G. Steffan. Generating network
topologies that obey power laws. InProceedings of
GLOBECOM’00, 2000.

[16] http://www.theregister.co.uk/2005/04/
15/im worm runs amok/.

[17] R. D. Smith. Instant messaging as a scale-
free network, 2002. http://arxiv.org/abs/
cond-mat/0206378v2.

[18] S. Staniford, V. Paxson, and N. Weaver. How to 0wn the
internet in your spare time. InProceedings of the 11th
USENIX Security Symposium (Security ’02), 2002.

[19] http://www.viruslist.com/en/viruses/
encyclopedia?virusid=75305.

[20] http://www.viruslist.com/en/
virusesdescribed?chapter=153312410.

[21] H. Wang, D. Zhang, and K. G. Shin. Detecting SYN
flodding attacks. InProceedings of IEEE INFOCOM’02,
June 2002.

[22] M. Williamson, A. Parry, and A. Byde. Virus throt-
tling for instant messaging. InVirus Bulletin Conference,
September 2004.

[23] Z. Xiao, L. Guo, and J. Tracey. Understanding in-
stant messaging traffic characteristics. InProceedings of
ICDCS’07, 2007.

[24] M. Xie, Z. Wu, and H. Wang. HoneyIM: Fast detec-
tion and suppression of instant messaging malware in
enterprise-like networks. InProceedings of ACSAC’07,
2007.

10

