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Abstract—Hypervisor-based fault tolerance (HBFT), a
checkpoint-recovery mechanism, is an emerging approach to
sustaining mission-critical applications. Based on virtualization
technology, HBFT provides an economic and transparent
solution. However, the advantages currently come at the cost of
substantial overhead during failure-free, especially for memory
intensive applications.

This paper presents an in-depth examination of HBFT and
options to improve its performance. Based on the behavior
of memory accesses among checkpointing epochs, we intro-
duce two optimizations, read fault reduction and write fault
prediction, for the memory tracking mechanism. These two
optimizations improve the mechanism by 31.1% and 21.4%
respectively for some application. Then, we present software-
superpage which efficiently maps large memory regions be-
tween virtual machines (VM). By the above optimizations,
HBFT is improved by a factor of 1.4 to 2.2 and it achieves
a performance which is about 60% of that of the native VM.

Keywords-Virtualization; Hypervisor; Checkpoint; Recov-
ery; Fault Tolerance

I. INTRODUCTION

Reliable service plays an important role in mission-critical
applications, such as banking system, stock exchange system
and air traffic control system, which cannot tolerate even
a few minutes’ downtime. Although service providers have
taken great efforts to maintain their services, various failures,
such as hardware failures [1] and maintenance failures, still
occur in data centers.

Hypervisor-based fault tolerance (HBFT), such as Re-
mus [2] and Kemari [3], is an emerging approach to sustain-
ing mission-critical applications. As a checkpoint-recovery
fault tolerance mechanism [4], HBFT works in the primary-
backup mode. It capitalizes on the ability of the hypervisor
or virtual machine monitor (VMM) [5][6] to replicate the
snapshot of a virtual machine (VM) from one host (primary
host) to another (backup host) at frequent intervals. During
each epoch, hypervisor records the newly dirtied memory
pages of the primary VM running on the primary host. At
the end of each epoch, the incremental checkpoint [7] (i.e.,
the newly dirtied pages, cpu state, etc.) is transferred to
update the state of the backup VM which resides on the
backup host. When the primary VM fails, its backup VM
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will take over the service. In this way, HBFT provides an
economic fault tolerance solution with commodity hardware
and software. Besides, without intervening in upper layers
(e.g., applications or libraries), HBFT works in a transparent
manner, even for legacy applications and operating systems.

However, the overhead of current HBFT systems seriously
affect the performance of the primary VM during failure-
free, especially for memory-intensive workloads. Lu and
Chiueh [8] reported that the performance of some realis-
tic data center workloads experienced 200% degradation.
Even with asynchronous state transfer optimization, in some
benchmark evaluation, Remus [2] still leads to a 103% slow
down compared to the native VM performance. Kemari [3]
reported a similar performance penalty. In our development
of HBFT system [9], how to improve the performance of
the primary VM during failure-free was a challenge.

The performance overhead of HBFT results from several
sources. Output commit problem [7], e.g., a disk write
operation or a network transmit operation, is a well-known
overhead. How to address this overhead is an active area of
research [7]. In this paper, we aim to address the overhead
coming from memory state synchronization that relies on
Xen live migration [10]. In a typical HBFT system, in
order to track dirtied memory pages of the primary VM
in each epoch, hypervisor applies the log dirty mode of
shadow page table (SPT) [11]1. This mode incurs a large
number of page faults, conflicting the goal of “Reducing
the frequency of exits is the most important optimization for
classical VMMs” [11]. In addition, at the end of each epoch,
all the dirtied pages have to be mapped and copied to the
driver domain (Dom0) before being transferred to the backup
host, which further causes serious performance degradation.

Contributions. In this paper, we present an in-depth ex-
amination of HBFT and options to improve its performance.
The following is a summary of our contributions.

First, we find that, at the granularity of checkpointing
epochs, shadow page table entries (shadow entry for short)
exhibit fine reuse, and shadow entry write accesses exhibit
fine spatial locality with a history-similar pattern.

1Log dirty mode can also be implemented on nested page table [12].
Unless otherwise specified, we improve the HBFT implemented on SPT.



Second, we introduce two optimizations, read fault re-
duction and write fault prediction, for the log dirty mode
of Xen. These two optimizations promote the performance
of the log dirty mode by 31.1% and 21.4% respectively for
some workload.

Finally, inspired by the advantages of superpage, we
present software-superpage to map large memory regions
between VMs. The approach significantly accelerates the
process of state replication at the end of each epoch.

By the above optimizations, the primary VM achieves a
performance which is about 60% of that of the native VM.

The remainder of this paper is organized as follows:
The next section introduces related technologies and the
general architecture of HBFT system. Section 3 describes
the behaviors of shadow entry accesses. Section 4 presents
the optimizations proposed for HBFT. Section 5 presents a
comprehensive evaluation of our optimizations. Section 6 is
about some related work, and section 7 give our conclusion.

II. BACKGROUND

This section first provides an overview of the log dirty
mode, the core of Xen live migration [10], and then a general
architecture of HBFT. Readers familiar with this material
may skip directly to Section 3.

A. Log Dirty Model

The log dirty mode is implemented on shadow page
table (SPT) which is the software mechanism to implement
memory virtualization. When running in a VM, the guest
OS maintains guest page tables (GPT) that translate virtual
addresses into physical addresses of the VM. The real page
tables, exposed to the hardware MMU, are SPTs maintained
by the hypervisor. SPTs directly translate virtual addresses
into hardware machine addresses. Each shadow entry is
created on demand according to the guest page table entry
(guest entry for short).

The log dirty mode is designed for VM live migration
to track dirty pages in each pre-copy round. The principle
of the log dirty mode is as follows. Initially, all the shadow
entries are marked as read-only, regardless of the permission
of its associated guest entries. When the guest OS attempts
to modify a memory page, a shadow page write-fault occurs
and is intercepted by the hypervisor. If the write is permitted
by its associated guest entry, the hypervisor grants write
permission to the shadow entry and marks the page as a dirty
one accordingly. Subsequent write accesses to this page will
not incur any shadow page faults in the current round.

In the current implementation, when to track dirty pages,
Xen first blows down all the shadow entries. Then, when
the guest OS attempts to access a page, a shadow page fault
occurs since there is no shadow entry existed. Xen intercepts
this page fault, re-constructs the shadow entry, and revoke
the write permission of the shadow entry. In this way, Xen
makes all the shadow entries read-only before write accesses.

running paused running

State Transfer

Ack

A B C
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Primary VM

Backup VM
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Figure 1: Execution process of HBFT.

Thus, the first write access to any page can be intercepted,
and dirtied pages can be tracked.

Therefore, the log dirty mode results in two types of
shadow page faults. First, when the shadow entry does not
exist, both read and write accesses will generate a shadow
page fault. Second, when an attempt is made to modify
a page through an existing shadow entry without write
permission, a shadow page write-fault occurs.

B. Architecture

Before the release of Remus, we developed a similar
HBFT prototype Taiji [9]. Remus uses separate local disk
for the primary VM and the backup VM, while Taiji
is deployed with network-attached storage (NAS). Unless
otherwise stated, our evaluations of this work are conducted
on Taiji. In this subsection, we will introduce the general
architecture of HBFT.

As a checkpoint-recovery fault tolerance mechanism, con-
sistent state between the primary VM and the backup VM is
a prerequisite. HBFT implements checkpointing by repeated
executions of the final phrase of live migration at a high
frequency of tens of milliseconds. Figure 1 illustrates how
HBFT obtains a consistent state. At the beginning of each
epoch (A), Xen initializes the log dirty mode for the primary
VM. During each epoch, dirtied pages are tracked. At
the same time, output state, including transmitted network
packets and data written to disk, is blocked and buffered in
the backend [5] of Dom0. At the end of each epoch (B),
the guest OS is paused, and dirty memory pages and CPU
state are mapped and copied to Dom0. These contents are
then sent to the backup host (C) through Dom0’s network
driver, and the guest OS is resumed simultaneously. Upon
receiving an acknowledgment from the backup host (F),
Dom0 commits the buffered output state generated in the
last epoch (the epoch between A and B).

In general, there are several substantial performance over-
heads from the above mechanism. Running in the log dirty
mode, the “running” guest OS generates more shadow page
faults than normal. Dealing with page faults is nontrivial,
especially in virtualized systems [11]. Furthermore, at the
end of each epoch, the guest OS has to be paused, waiting
for Dom0 to map and copy the incremental checkpoint.
Mapping physical pages between VMs is expensive [13],
lengthening the “paused” state of the guest OS.
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Figure 2: The degree of shadow entry reuse.

III. BEHAVIOR OF SHADOW ENTRY ACCESS

Recall that the log dirty mode results in a considerable
number of shadow page faults which result in a substantial
performance degradation. To motivate our optimization de-
cisions, in this section, we provide an initial study on the
behavior of shadow entry accesses, including the shadow
entry reuse and the spatial locality of write accesses.

We study shadow entry accesses at the granularity of
epochs, and a shadow entry is recorded at most once during
a single epoch, no matter how many times it is accessed.
The experiment in this section obtains one checkpoint of
the guest OS every 20msec. Other experiment parameters,
hardware configurations and benchmarks are discussed in
Section 5.

A. Shadow Entry Reuse.

The behavior of page table entry reuse, at the granularity
of instructions, has been well studied in literature [14]. We
find that, even at the granularity of epochs, shadow entry
accesses exhibit a similar behavior. In this paper, shadow
entry reuse is defined as: if a shadow entry is accessed in
an epoch, it will likely be accessed in future epochs.

Figure 2 demonstrates the degree of shadow entry reuse
in different workloads. Reuse is measured as the percentage
of unique shadow entries required to account for a given
percentage of page accesses. In the workload of CFP, which
reveals the best shadow entry reuse, less than 5% of unique
shadow entries are involved to cover more than 95% page
accesses. Even SPECweb, a larger workload, also has a
fine reuse behavior. Although SPECjbb has less entry reuse,
nearly 60% page accesses are still carried out through only
15% unique shadow entries.

B. Shadow Entry Write Access.

In this subsection, we study the behavior of shadow
entry write access. The spatial locality of write accesses
is the tendency of applications to modify memory near
other modified addresses. During an entire epoch, larger
than 4KB (a page size) virtual memory being modified will
involve more than one shadow entry being write accessed.
To describe the spatial locality, write access stride (stride
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Figure 3: Spatial locality of write accesses.

for short) is defined as consecutive shadow entries that have
been write accessed in the same epoch. The length of a
stride is defined as the number of shadow entries it contains.
Usually, several strides exist in an L1 SPT. We define the
average length of these strides as ave stride, used to depict
the degree of spatial locality of write accesses for each SPT.
And here, ave stride is in the range [0,512]. (512 indicates
the total number of page table entries. For a 32-bit system,
the range is [0,1024]. For a 64-bit or 32-bit PAE system,
it is [0,512].) A longer ave stride indicates better spatial
locality. The value of 512 means that all the pages covered
by the L1 SPT have been modified, and 0 indicates that no
shadow entry is write accessed.

Figure 3 provides the spatial locality of shadow entry
write accesses for the workloads investigated. We divide all
the shadow entries that have been write accessed within an
epoch into six groups according to the length of the strides.
For instance, [5,16] contains all the shadow entries that
reside in the strides of 5 to 16 entries in length. As shown in
Figure 3, the workload CFP exhibits best spatial locality of
write accesses. More than 90% shadow entries are located in
the strides of above 17 entries in length. Surprisingly, nearly
60% entries are located in the strides longer than half of
an SPT. Another CPU intensive workload, CINT, also has
fine spatial locality. However, SPECweb exhibits bad spatial
locality, because SPECweb, as a web server, deals with a
large number of concurrent requests of which each induces
a small memory modification.

Furthermore, we find that SPT’s write accesses present
a history-similar pattern. That is, the ave stride of a SPT
tends to keep a steady value within some execution period.
In order to demonstrate this property, we define delta stride
as:

delta stride = |ave striden − ave striden+1| (1)

where ave striden indicates the ave stride of a particular
SPT in the nth epoch. Delta stride is also in the range
[0,512]. A shorter delta stride indicates a more history-
similar pattern. It should be noted that we do not use
standard deviation to depict this property since ave stride
values of an SPT between two epochs far apart may be very
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Figure 4: History-similar pattern of write accesses.

different.
Figure 4 provides the distribution of delta strides across

the whole execution of each benchmark. With less spatial
locality, SPECweb still exhibits an excellent history-similar
pattern. From Figure 3, we can conclude that the value of
most L1 SPT’s ave strides is one, leading the vast majority
of delta strides to be zero. Even in the workload CFP with
the lowest degree, 75% of delta stride values are still below
5 shadow entries.

IV. OPTIMIZATION DETAILS

In this section, we will present our optimization details
of HBFT implementation on Xen. We will first give our ap-
proaches to minimizing the performance overhead resulting
from the log dirty mode. Then, we will present the software-
superpage mechanism to efficiently map a large number of
memory pages between virtual machines.

A. Log Dirty Mode Optimization

In the previous section, we analyzed the behavior of
shadow entry accesses. Based on these observations, we
propose read-fault reduction and write-fault prediction to
optimize the log dirty mode of Xen.

1) Read-Fault Reduction: Log dirty mode, first developed
for Xen live migration, did not take the behavior of shadow
entry reuse into consideration [10]. At the beginning of each
pre-copy round, all the SPTs are destroyed. In each round,
the first access to any guest page will result in a shadow
page fault and write accesses will be intercepted by Xen.
The side effect of this mechanism is that too many shadow
page read-faults are generated, but only write accesses are
necessarily intercepted in order to record dirtied pages. The
mechanism has little effect on live migration since the whole
migrating process takes a few number of pre-copy rounds
before completion.

However, for the HBFT system which runs in repeated
checkpointing epochs at frequent intervals during failure-
free, the mechanism of the log dirty mode induces too much
performance overhead. Based on the behavior of shadow
entry reuse analyzed in Section 3, we propose an alternative
implementation.

Intuitively, we only need to scan the L1 shadow entries
one by one and revoke all write permissions. Thus, all the
shadow entries can be reserved for read accesses in future
epochs, avoiding recreating them repeatedly. However, if
there are too many L1 shadow entries and few of them will
be reused in future, the intuitive approach may not outweigh
the original one. In addition, when entries with writable
permission are in the minority, it is also unnecessary to scan
all L1 shadow entries. It is noteworthy that the guest OS is
paused in this scanning period. Longer scanning time means
more performance degradation on the guest OS.

In order to revoke write permissions efficiently, we use
a bitmap marker for each SPT. Take x86 32-bit PAE (512
entries per SPT) for example. Each bit of an eight-bit marker
corresponds to one eighth of the L1 SPT and indicates
whether there are writable entries in the segment. At the
beginning of each epoch, all the markers are initialized to
zero, which means no writable entries exists. During the
period of execution, when a shadow page write-fault occurs,
its associated bitmap is set according to the position of the
shadow entry. At the end of this epoch, which segment is to
be scanned is decided by the marker. Due to the fine spatial
locality of most applications, those entries with writable
permission tend to cluster together, making scanning process
efficient. Thus, the paused period at the end of each epoch
can be kept in an acceptable length.

Though optimized for HBFT systems, our read fault re-
duction is also beneficial for live migration. We are planning
to merge these modifications into the upcoming version of
Xen.

2) Write-Fault Prediction: In order to track dirty pages,
hypervisor intercepts write accesses by revoking the write
permission of shadow entries. First access to any page
results in a shadow page write-fault. Handling page faults
incurs non-trivial overhead, especially for applications with
large writable working sets [10]. We consider improving
log dirty mode further by predicting which entries will be
write accessed in an epoch and granting write permission in
advance.

When a shadow entry is predicted to be write accessed
in the epoch, the page pointed to by this entry is marked
as dirty, and the entry is granted with write permission,
which will avoid shadow page write-fault if the page is really
modified later. However, prediction faults will produce more
“dirty” pages which consume more bandwidth to update
the backup VM. The FDRT technique proposed in [8],
which transfers incremental checkpoint at a fine-grained
dirty region within a page, can pick out fake dirty pages
before transferring, but it incurs more overhead of computing
a hash value for each page.

Based on the behavior of shadow entry write accesses
analyzed in the previous section, we develop a prediction
algorithm which is called Histase (history stride based)
and relies on the regularity of the system execution. In the



following, we will answer two questions: (1) how to predict
write accesses effectively? (2) how to rectify prediction
faults efficiently?

To describe the behavior of write accesses, Histase main-
tains his stride for each SPT, which is defined as:

his stride = his stride ∗ α+ ave stride ∗ (1− α) (2)

where his stride is set to zero initially and the ave stride
obtained from the previous epoch forces his stride to adapt
to the new execution pattern, and 0≤ α <1.

There are two points to be explained for this equation.
First, the parameter α provides explicit control over the es-
timation of SPT’s historical stride behavior. At one extreme,
α = 0 estimates his stride purely based on the ave stride
from the last epoch. At the other extreme, α ≈ 1 specifies
a policy that his stride is estimated by a long history. In
this paper, we set α = 0.7 by default. Second, Histase
builds upon the optimization of read fault reduction. When
scanning L1 SPTs at the end of each epoch, ave stride can
be calculated at the same time with trivial CPU overhead.

When a valid shadow page write-fault occurs, Histase tries
to promote more writable permission based on his stride.
Heuristically, those shadow entries within his stride for-
wards and his stride/3 backwards become candidates of
which those that are not allowed to be writable are ignored.
Understandably, when a page is modified, the pages forwards
also tend to be modified for spatial locality. However,
predicting backwards is somewhat obscure. In practice,
some applications traverse large array reversely with small
probability. In addition, user stack grows towards lower
addresses in some operating systems [14]. Thus, Histase also
predicts a smaller number of backward shadow entries.

Prediction faults are inevitable. In order to rectify them,
Histase takes advantage of an available-to-software bit
(called Predict bit in Histase) and Dirty bit of L1 shadow
entry. When a shadow entry is granted with write permission
due to prediction, Histase sets its Predict bit and clears
the Dirty bit. Whenever the entry is write accessed in the
future of this epoch, its Dirty bit will be set automatically
by the MMU. At the end of each epoch, Histase checks
each predicted entry. Those entries without Dirty bit set are
picked out as fake dirty pages.

Faulty predictions result in more shadow entries with
write permission, which will make the scanning period at the
end of each epoch more time-consuming. Fortunately, since
Histase takes effect whenever a shadow page write-fault
happens, the predicted entries are close to those pointing
to actual dirty pages. With the help of the marker proposed
in read fault reduction, scanning process stays efficient.

B. Software-Superpage

In this subsection, we introduce software-superpage, and
show how it improves memory state transfer between VMs.

L2 Page Table L1 Page Table

Normal L2 Entry

L2 Entry for Pseudo 

Persistent Mapping

Pointing to 

Primary VM 

Pages

V
ir

tu
al

 A
d
d
re

ss
 S

p
ac

e 
o
f 

D
o
m

0

Figure 5: Software-superpage mapping to the primary VM’s
entire memory pages.

The Xen hypervisor is not aware of any peripherals. It
reuses the Dom0’s drivers to manage devices, including the
network driver. At the end of each epoch, all the dirty pages
have to be mapped into Dom0’s address space for read-
only accesses before being sent to the backup VM through
the network driver. The overhead of mapping/unmapping
memory pages between VMs is rather large. Since the
primary VM is paused in this period, this overhead results
in serious performance degradation. Evidently, reducing the
mapping/unmapping overhead can improve the performance
of the Primary VM significantly.

The simplest method to eliminate the overhead is to
map the entire memory pages of the primary VM into
Dom0’s address space persistently, avoiding the map/unmap
operations at the end of each epoch. However, the virtual
address space required in Dom0 must be equal to the primary
VM’s memory size. This is not a problem for the 64-bit
address systems, but the 32-bit systems with limited address
space (4G) still account for a great proportion nowadays.
In addition, many 32-bit legacy applications are still in
use. Therefore, persistent mapping is not practical when the
primary VM is configured with a large memory.

Software-superpage, designed as a pseudo-persistent map-
ping, reduces the map/unmap overhead to a low level. Our
design builds upon two assumptions. First, Dom0 is non-
malicious and can be granted with read-only access to the
primary VM’s entire physical memory. Second, because
of balloon driver [6] or memory hotplug [15], a system’s
memory pages may be changed. We first assume that the
primary VM’s memory size keeps constant when being
protected, then at the end of this subsection, we will relax
this assumption.

Figure 5 illustrates the design details. For brevity, we
take 32-bit PAE system for example. In the initialization
phase of fault tolerance, Dom0 allocates L1 page tables
(PT) for pseudo-persistent mapping. These L1 PTs point to
the primary VM’s entire memory pages, from zero to the
maximum size. For example, if the primary VM’s memory
size is 4G, then 2,048 L1 PTs in Dom0 are allocated, each
covering 2M physical memory pages. In our design, we



allocate a smaller number of L2 PT entries (PTE) than 2,048
L2 PTEs to point to these L1 PTs. For example, 32 L2
PTEs (i.e., 64M virtual address space of Dom0). At any
time, among these 2,048 L1 PTs, at most 32 of them are
actually installed into these L2 PTEs. We call these L1
PTs officeholding PTs. Those uninstalled L1 PTs are called
nonofficeholding PTs, and are pinned in Dom0’s memory
giving Xen an intuition that these pages are being used as
L1 PTs. When coping a dirty page, Dom0 first checks these
L2 PTEs mappings. If the L1 PT that covers the dirty page
has been installed into an L2 PTE, the page can be accessed
directly. Otherwise, an L2 PTE is updated to point to the
L1 PT, promoting the L1 PT to officeholding. In this way,
we map/unmap memory pages as superpage mapping with
a limited virtual address space.

In order to reduce the times of updating L2 PTEs, we
employ an LRU algorithm [14] to decide which L2 PTE
should be updated. When an L1 PT is accessed, its associ-
ated L2 PTE is marked as the youngest. A nonofficeholding
L1 PT is always installed into the oldest L2 PTE. This policy
is based on the observation that the set of pages that have
not been modified are less likely to be modified in the near
future. With fine temporal locality of memory accesses, the
majority of pages can be directly accessed with its L1 PT
already being installed.

The advantages of software-superpage are two-fold. On
one hand, for fault tolerance daemon, it provides an illusion
that all the memory pages of the primary VM are mapped
into Dom0’s address space persistently. It eliminates almost
all map/unmap overhead. On the other hand, it does little
disturbance to the other parts residing in the same virtual
address space of Dom0 because only a small part of virtual
address space is actually used to access the entire memory
pages of the primary VM.

Outstanding Issues. In the design, we make an assumption
that the primary VM’s memory pages stay constant. How-
ever, in a typical virtualization environment, page changes
may take place. Transparent page sharing [6][16] is a preva-
lent approach to harnessing memory redundancy. Pages are
shared among VMs if they have identical or similar content.
The shared pages except the referenced one are reclaimed
from the VMs, and when sharing is broken, new pages will
be allocated to the VMs. In addition, the first version of Xen
PV network driver used a page flipping2 mechanism which
swapped the page containing the received packet with a free
page of the VM [5].

To cope with these challenges, an event channel is em-
ployed in Dom0. If any of the primary VM’s pages is
changed, hypervisor sends a notification to Dom0 through
the event channel. Upon notification, Dom0 updates the
corresponding L1 shadow entry to point to the new page.

2Menon et al. [17] has shown that page flipping is unattractive.
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Figure 6: The performance of the primary VM with different
configurations.

V. EVALUATION

The optimizations presented in the previous section are
implemented on Xen-3.3.1, with Dom0 and the primary VM
running XenoLinux version 2.6.18 configured with 32-bit
PAE kernel.

All the experiments are based on a testbed consisting
of two HP ProLiant DL180 Servers, each with two quad-
core 2.5GHz processors (8 cores in total), 12G memory
and a Broadcom TG3 network interface. The machines are
connected via switched Gigabit Ethernet. We deploy the
primary VM on one of the two machines, and the backup
VM on the other. The primary VM is configured with 2G
memory and a single virtual CPU pinned to a physical core
of one of the CPU sockets. The Dom0 is configured with the
remaining 10G memory and 4 virtual CPUs that are pinned
to different cores of the other CPU socket.

In this paper, we focus on the performance overhead
resulting from synchronizing memory state between the pri-
mary VM and the backup VM in each epoch. The snapshot
of virtual disk and network output commit, which are two
other components of the HBFT system, are disabled in these
experiments to eliminate their influence. Besides, the length
of an epoch is sensitive to system performance. Throughout
the paper, we set an epoch 20 msec as default.

A. Workload Overview

We evaluate our optimization techniques with a variety of
benchmarks representative of real-world applications. Table
1 lists the workloads. Among them, SPECjbb and SPECweb
are server applications and candidates for fault tolerance in
the real world. The server of SPECweb runs in the primary
VM, and two separate client machines and one backend
simulator (BeSim) are connected with the primary VM via
switched Gigabit Ethernet. CINT and CFP are also presented
for reference points.

We run each workload three times and the average value
is presented in this paper.



Table I: Workloads Description.

Workload Description
CINT SPEC CPU2006 integer benchmark suite.
CFP SPEC CPU2006 floating point benchmark suite.

SPECjbb SPECjbb2005 configured with Java 1.6.0.
A benchmark that is used to evaluate the performance of Internet servers running Java applications.

SPECweb SPECweb2005 configured with Apache 2.2.
A benchmark that is used to evaluate the performance of World Wide Web Servers.

B. Overall Result

Figure 6 shows the performance of the primary VM which
runs different workloads, and the performance is normalized
to that of the native VM running in Xen (baseline). We
present the following configurations: ‘Non Optimized’ refers
to the unoptimized HBFT. ‘LogDirty Optimized’ refers
to the version with only the log dirty mode optimized,
including read fault reduction and write fault prediction.
‘LogDirty-Map Optimized’ refers to the optimized version
with both the optimized log dirty mode and the software-
superpage map. We do not compare the performance with
that of the applications running in native operating systems
(i.e., non-virtualized environment), because the overhead
resulting from Xen hypervisor is rather small [5] and is not
the focus of this work.

As shown in Figure 6, CINT suffers the worst perfor-
mance degradation when running in the unoptimized HBFT,
yielding only about 30% of baseline performance. Relative
to the other workloads, CINT, which has a larger writable
working set, leads to high overhead by log dirty mode and
memory mapping. By our optimizations, the performance of
CINT improves by 33.2% and 84.5% respectively by apply-
ing the optimized log dirty mode and software-superpage
mechanism.

Relative to the optimized log dirty mode, software-
superpage optimization gains more improvement for all
workloads. By our optimizations, the primary VM is im-
proved by a factor of 1.4 to 2.2 and it achieves a performance
which is about 60% of that of the native VM. In the
following, we will examine each optimization in detail.

C. Log Dirty Mode Improvement

1) Experimental Setup: The log dirty mode is the mech-
anism to record which memory pages are dirtied. To better
understand its improvement, we quantify its performance in
an isolated environment. At the beginning of each epoch, we
make all memory pages of the primary VM read-only with
a hypercall. Then, the primary VM resumes running for an
epoch of 20msec. After that, we repeat the above procedure
without engaging other components of HBFT.

2) Log Dirty Mode Efficiency: We evaluate the log dirty
mode with the following configurations: ‘OriginXen’ refers
to the Xen with the unoptimized log dirty mode, ‘RFRXen’
refers to the version with read fault reduction optimization
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Figure 7: The performance of the log dirty mode, normalized
to the native VM.

and ‘WFPXen’ refers to the optimized version with write
fault prediction.

Performance. Figure 7 compares the performance of the
primary VM running in different versions of the log dirty
mode with that of the native VM.

The results show that the log dirty mode of OriginXen
incurs non-trivial performance degradation, ranging from
19.8% on CFP to 57.4% on SPECweb.

RFRXen, which exploits the behavior of shadow entry
reuse, improves the performance of CINT by 31.1% relative
to OriginXen. It should be noted that though SPECweb
experiences a large number of requests with short session,
it still derives much benefit from RFRXen, gaining 55.2%
improvement.

Based on RFRXen, WFPXen improves the log dirty mode
further by well predicting shadow page write-faults. As
expected, CINT, CFP and SPECjbb are improved further,
by 21.4%, 5.6%, and 8.9% respectively, since they have
fine spatial locality as demonstrated in Figure 3. Especially,
SPECjbb achieves nearly 95% of baseline performance.
However, the applications with poor spatial locality yield
little improvement. SPECweb even suffers one score of
degradation (from 402 in RFRXen to 401 in WFPXen). We
will analyze these further by reduction of shadow page faults
and by prediction accuracy.

Reduction of Shadow Page Faults. To determine where
our optimization techniques differ from OriginXen, Figure
8 demonstrates the average count of shadow page faults
per epoch with different configurations. RFRXen almost
reduces the average count of shadow page read-faults to
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Figure 8: shadow page faults. From left to right, OriginXen,
RFRXen and WFPXen.

zero for most applications investigated. However, SPECweb
still suffers considerable read-faults. SPECweb consumes
more SPTs since many concurrent processes exist and the
working set is very large. For the constraint of memory
size reserved for SPTs, Xen has to destroy some of SPTs
for newly allocated ones, even though those SPTs will be
used in the near future. Besides, destroying and allocating
SPTs are common since most of the processes have a short
lifetime. The majority of shadow page read-faults come from
non-existed shadow entries, and many read-faults remain
in SPECweb. We are investigating to resize some resource
limits of Xen to cope with the larger working set of today’s
applications.

Another thing to note is that most applications running
in RFRXen experience more shadow page write-faults per
epoch compared with OriginXen (e.g., 934 more for CINT)
because the elimination of most shadow page read-faults
makes the system run faster. As a result, more application
instructions are issued during a fixed epoch, which incurs
more shadow page write-faults.

Prediction Accuracy. Histase combines the behaviors of
spatial locality and history-similar pattern to predict shadow
page write-faults. To better understand efficiency of Histase,
we borrow the terminologies from information retrieval:
recall is the number of true predictions divided by the total
number of dirty pages in each epoch and precise is the
number of true predictions divided by the total number of
predictions.

Figure 9 shows that Histase behaves differently among the
workloads. As expected in Figure 3, the applications with
fine spatial locality benefit well. Take CFP for example.
Histase predicts 68.5% of shadow page write-faults, with
false predictions being only 29.3%.

Histase predicts few shadow page write-faults in
SPECweb because of its poor spatial locality, as demon-
strated in Figure 3. However, Histase still predicts with high
precise since it bases its prediction on history-similar pattern,
and retains application performance.
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Figure 9: Accuracy of shadow page write-fault prediction.

Table II: Software-superpage hit ratio.

Workload CINT CFP SPECjbb SPECweb
Hit Ratio 97.27% 97.25% 97.80% 79.45%

D. Software-Superpage Evaluation

With limited virtual address space of Dom0, software-
superpage eliminates almost all of the memory mapping
operations, reducing the primary VM’s paused period drasti-
cally. Throughout this paper, we allocate a fixed 64M virtual
address space in Dom0 in order to map all the memory pages
of the primary VM (2G).

The performance of software-superpage mainly depends
upon how effectively we use limited virtual address to map
dirty pages. The LRU algorithm is intended to unmap the
pages that are least likely to be dirtied again, and here we
evaluate how well it achieves that goal.

Table 2 shows the mapping hit ratio for different work-
loads running in the primary VM. The hit ratio reveals
the probability that a newly dirtied page has already been
mapped into the limited virtual address space. Due to the
memory access locality, software-superpage performs well
for most workloads, with a hit ratio of over 97%. This
mechanism works not so well for the workloads with poor
locality, which is confirmed by the hit ratio of SPECweb.
Nevertheless, it has mapped nearly 80% of the dirty pages
accessed.

With a high hit ratio, software-superpage eliminates al-
most all of the mapping operations, reducing the length of
the paused state greatly. As shown in Figure 6, software-
superpage improves the performance of the primary VM by
at least 30% relative to the unoptimized HBFT.

VI. RELATED WORK

Hypervisor-based fault tolerance is an emerging solu-
tion to sustain mission-critical applications. Bressoud and
Schneider [18] proposed the pioneering system with lockstep
method which depends upon architecture-specific imple-
mentation. Lockstep requires deterministic replay on the
backup VM and is not convenient for multi-core systems.
Recently, based on Xen live migration, Remus [2] and
Kemari [3] provide an alternative solution. However, like



most checkpoint-recovery systems, both Remus and Kemari
incur serious performance degradation for the primary VM.
We develop a similar HBFT system, Taiji. In this paper, we
abstract a general architecture of these systems and illustrate
where the overhead comes from.

How to address the overhead of HBFT has attracted some
attention. Closest to our work is Lu and Chiueh’s [8]. They
focused on minimizing the checkpoint size transferred at
the end of each epoch by fine-grained dirty region track-
ing, speculative state transfer and synchronization traffic
reduction using an active backup system. We improve the
performance of the primary VM by addressing the overhead
of memory page tracking and the overhead of memory
mapping between virtual machines. Though the focuses are
different, these two studies are complementary to each other.

Checkpoint-recovery mechanism has been used in vari-
ous areas [4][19][7] to tolerate failures. Many researchers
have been engaged in reducing checkpointing overhead. For
example, incremental checkpointing [20] is exploited by
reducing the amount of data to be saved. The objective of
our work is to optimize the checkpointing implementation
based on hypervisor, which present a different challenge.

Prefetching is a well-known technique widely applied
in computer systems. There is a large body of literature
on prefetching for processor caches, which can be viewed
in two classes: those that capture strided reference pat-
terns [21], and those that make prefetching decision on
historic behavior [22]. In addition, many researchers have
focused on reducing MMU walks by prefetching page table
entries into TLB. Distance prefetching [23], which approx-
imates the behavior of stride based mechanism and tracks
the history of strides, is similar to our Histase prefetching.

Interestingly, our software-superpage optimization bor-
rows the idea of temporary kernel mappings [24]. Every
page in high memory can be mapped through fixed PTEs in
the kernel space, which is also an instance of mapping large
physical memory by limited virtual addresses.

Software-superpage is inspired by the advantages of su-
perpage which has been well studied in literature [25].
Superpage has been adopted by many modern operating
systems, such as Linux [24] and FreeBSD [26]. These
studies rely on hardware implementations of superpages
which restrict to map physically continuous page frames.
Swanson et al. [27] introduced an additional level of address
translation in memory controller so as to eliminate the con-
tinuity requirement of superpages. Our software-superpage
mechanism, which also avoids the continuity requirement, is
designed to reduce the overhead of mapping memory pages
between VMs.

VII. CONCLUSION

One of the disadvantages of HBFT is that it incurs too
much overhead to the primary VM during failure-free. In
this paper, we first analyze where the overhead comes

from in a typical HBFT system. Then, we analyze memory
accesses at the granularity of epochs. Finally, we present the
design and implementation of the optimizations to HBFT.
We illustrate how we address the following challenges,
including: a) analyzing the behavior of shadow entry ac-
cesses, b) improving the log dirty mode of Xen with read
fault reduction and write fault prediction, and c) designing
software-superpage to map large memory region between
VMs. The extensive evaluation shows that our optimizations
improve the performance of the primary VM by a factor of
1.4 to 2.2 and the primary VM achieves about 60% of the
performance of that of the native VM.
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