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Abstract—A key benefit of Amazon EC2-style cloud computing
service is the ability to instantiate a large number of virtual
machines (VMs) on the fly during flash crowd events. Most
existing research focuses on the policy decision such as when
and where to start a VM for an application. In this paper, we
study a different problem: how can the VMs and the applications
inside be brought up as quickly as possible? This problem has
not been solved satisfactorily in existing cloud services.

We develop a fast start technique for cloud applications by
restoring previously created VM snapshots of fully initialized
application. We propose a set of optimizations, including working
set estimation, demand prediction, and free page avoidance, that
allow an application to start running with only partially loaded
memory, yet without noticeable performance penalty during its
subsequent execution. We implement our system, called Twinkle,
in the Xen hypervisor and employ the two-dimensional page
walks supported by the latest virtualization technology. We use
the RUBiS and TPC-W benchmarks to evaluate its performance
under flash crowd and failure over scenarios. The results indicate
that Twinkle can provision VMs and restore the QoS significantly
faster than the current approaches.

I. INTRODUCTION

Internet services can experience sudden, unexpected surge in

demand, or the so-called flash crowd events [1]. Those services

are increasingly deployed in the cloud to take advantage of its

auto scaling feature [2]. A well-known example of the cloud

model is the Amazon EC2 service which allows users to rent

VM instances and operate them much like raw hardware. A

key benefit of using such a service is the ability to provision

a large number of VM instances when flash crowd happens.

Most existing work on auto scaling focuses on policy decision

such as when and where to provision a VM for an Internet

service. In this paper, we study the mechanism of resource

provisioning: how can the VMs and the applications inside be

brought up and start running as quickly as possible? This is

important to the user experience, especially during flash crowd

and failure over scenarios.

Unfortunately, the startup latency for cloud applications

can be quite high. For example, it can take several minutes

to acquire a new VM instance in Amazon EC2 [3], then

comes the also time-consuming process of VM startup and

application initialization. Complex applications can take a

long time to initialize. This does not work well in flash

crowd scenario. For example, on September 11th of 2001,

the demand on the CNN’s web site increased by an order of

magnitude in 15 minutes [4]. If additional capacity cannot be
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Fig. 1. Comparison of the startup latency

provisioned fast enough, a significant number of user requests

will experience poor QoS or the service may even be brought

down. Another common scenario is when failures occur and

the application replicas need to be restarted. Optimizing the

startup latency can reduce the failure over time and improve

the availability of the system.

In this paper, we show how to use virtualization technology

to reduce the application start time. Our technique is imple-

mented in the Xen hypervisor [5] and is transparent to the

guest operating system (guest OS) and the application. The

current VM suspend operation allows us to take a snapshot

of the application together with its running environment. The

snapshot can then be resumed to restore the application later

to bypass the often lengthy application initialization. Fig 1

compares this technique with the normal startup process for

a typical Internet application, a RUBiS [6] service within

JBoss, running on Dell PowerEdge blade servers with Intel

5620 CPU, 24 GB RAM and 10K RPM SAS disks. The VMs

are configured with a varying amount of memory. The ‘Start’

curve shows the normal start time for the VM and the appli-

cation. It is close to 100 seconds, independent of the memory

size. We consider the application as fully started when it can

respond to a user request successfully. The ‘Resume’ curve

shows the start time using a previously created VM snapshot.

The figure indicates that VM resumption time increases with

memory size due to the time to load the VM snapshot. For

a 4G VM, it is almost as slow as the normal startup time.

Amazon EC2 allows high throughput VM instances with tens

of Gigabytes of memory [3] where this native approach is

clearly infeasible.

Contributions. In this paper, we present Twinkle, a fast

resource provisioning mechanism that reduces VM startup la-

tency to a few seconds, as shown in Fig 1. With this improved

VM startup latency, decisions of auto scaling policies can be
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put into effect more readily, which can improve user experi-

ence when combating flash crowds or failure overs. The basic

design of Twinkle is to load pages on demand and we propose

three techniques to improve the startup time and runtime

performance: working set estimation, demand prediction, and

free page avoidance. The first technique selectively loads only

the memory pages that are likely to be accessed in the near

future. This allows the VM to start running with only partial

memory loaded from its snapshot. The second technique loads

some of the remaining memory pages in parallel with the VM

execution. It uses a demand prediction algorithm to reduce the

runtime overhead due to page faults. The last technique avoids

loading unused memory pages which can instead be allocated

directly by the hypervisor.

We use copy-on-write (COW) technique to eliminate the

need of copying root file system when a large number of VM

instances are started from the same snapshot. The snapshot

of the original root file system is immutable. Each new VM

modifies and stores its own state locally. In addition, we

propose a network reconfiguration mechanism to adapt a VM’s

network after its startup.

We evaluate the performance of our system under flash

crowd and failure over scenarios using Spec CPU2006, RU-

BiS, and TPC-W benchmarks. The results indicate that Twin-

kle can provision the virtual machines and restore the QoS

significantly faster than the current approaches.

The remainder of this paper is organized as follows. Section

II introduces the two-dimensional page walks in a virtualized

system. Section III illustrates the architecture of Twinkle.

Section IV and V describe the design and implementation

of the key techniques that enable fast resource provisioning.

Section VI evaluates the performance and applications of our

system. Section VII discusses the related work, and Section

VIII concludes this paper.

II. TWO-DIMENSIONAL PAGE WALKS

Twinkle relies on the mechanism of two-dimensional page

walks which is recently present in AMD’s “Barcelona” and

Intel’s “Nehalem” families respectively [7][8]. Before we

present the design details, in this section, we first have a brief

look at the features of this hardware.

In a virtualized platform, multiple guest OSs run simulta-

neously, sharing the common memory with strong isolation.

The hypervisor provides each guest OS with an illusion

that it has a continuously zero-based physical address space,

which is commonly achieved by two-dimensional page walks,

as illustrated in Fig 2. There is one page walker for each

dimension. The first page walker performs translation from

the virtual address of a program to a physical address of the

VM, and the second page walker performs translation from the

physical address to a machine address of the physical server.

In the first generation of virtualization, the second di-

mensional page walk was maintained by a software-based

technique, called shadow paging. Recently, to avoid software

overhead, both AMD and Intel added Nested Paging (called

Extended Paging by Intel) as the second hardware page walker.

Fig. 2. Two-Dimensional Page Walks. VA stands for the virtual address of
a program, PA stands for the physical address of a VM, and MA stands for
the machine address of the physical server.
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Fig. 3. Example of a cloud data center running Twinkle.

Nested Paging translates a physical address to a machine

address by walking the nested page tables (NPT) that are

maintained by the hypervisor. The structure of the NPT is

the same as the traditional guest page table (GPT), both

constructed in a hierarchical tree. Each nested page table

entry contains control bits to indicate the corresponding page’s

properties (e.g., non-present, writable, readable and non-

executable). Twinkle exploits this hardware feature to track

and manipulate VM memory layout transparently.

III. ARCHITECTURE

The Internet services running in the clouds always employ

the multi-tier architecture that consists of a presentation tier,

an application logic tier and a storage tier. The first two tiers

typically use non-persistent data and are often hosted in the

elastic computing servers (e.g., EC2), and the persistent data

is often stored in a back-end database or a distributed storage

system (e.g., S3 or EBS). Different applications present burden

on different tiers. The back-end storage system has addressed

the scalability and reliability well, and has been successfully

deployed in the clouds for years [9][10]. In this paper, we focus

on the mechanism of provisioning resources in the scope of

elastic computing servers.

Fig 3 shows an example of a cloud data center. The

example has two physical machines (PM1 and PM2 in “Elastic

Computing Servers”), each of which runs Twinkle to enable

fast VM startup. The RUBiS service has two instances, each

of which is encapsulated in a separate VM. If one of them

fails or the workload roars, one or more instances will be

provisioned on demand. Unlike existing VM startup approach,

Twinkle starts a VM from a VM snapshot which contains an
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initialized execution environment (“Execution Snapshot”) and

a root file system (“VM Image”). The VM snapshot is stored

in a shared storage (“Image Storage”), the same as EC2 which

stores virtual machine images (VMI) in S3 or EBS [3].

In the front, the dispatcher monitors each VM instance

and the service quality, decides how many VMs each service

should be provisioned, and routes incoming requests among

the VMs. In the back-end, we deploy a database cluster to

ensure against bottleneck in the data tier.

IV. DESIGN

The objective of Twinkle is to quickly start a VM from

a VM snapshot with trivial performance overhead. In this

section, we will first describe the enabling techniques, working

set estimation, demand prediction and free page avoidance.

These techniques do not require any modifications to the upper

operating system and the applications running in it. Then we

will present the related issues of the root file system and the

network reconfiguration.

A. Working Set Estimation

When starting from a VM snapshot, the most influential

overhead on startup latency is the time of fetching the VM’s

memory pages. The current approach, which starts the VM

after loading its total pages, achieves VM startup in time

proportional to the amount of the memory. An alternative

approach is demand paging, which fetches the memory pages

only when needed. However, loading every page from the

remote storage node (Image Storage in Fig 3) is a slow process.

This approach would cause the Internet services unresponsive

at the beginning. The other possibility is to flush non-essential

pages out of the VM’s memory with a balloon driver [11] to

create a smaller snapshot. After the VM starts, it pages in

the non-essential pages when needed. Unfortunately, balloon

driver is an intrusive approach which would alter the behavior

of the guest OS, and moreover, it would incur swapping or

process termination if too many pages are flushed [5].

Our approach enhances startup latency by loading working

set of the operating system before starting the VM. To track the

working set, we borrow the idea of post-checkpoint tracking

mechanism [12]. After the snapshot has been taken, the VM

continues to run for an interval during which the pages referred

by the operating system are identified as working set. This

approach employs the truth that the pages referred after the

snapshot will be in high probability accessed when the VM

starts from the snapshot later.

In our system, there are two questions related to this

post-checkpoint tracking mechanism. First, how to track the

working set? In order not to intrude the guest OS, we exploit

the second dimension page walker to track working set. When

the snapshot has been made, we traverse the NPT of the

VM, and mark all the page table entries as “non-present”.

During the tracking period, the pages referred by the guest

OS will induce a nested page fault which will be caught by

the hypervisor. The pages inducing page faults are recognized

as working set of the guest OS. This tracking mechanism

Fig. 4. Demand prediction.

is completely implemented in the hypervisor, and exerts no

influence on the behavior of the guest OS.

Second, how does one determine when to stop the tracking?

A large tracking window produces large working set and

increases the latency of startup, while a small window reduces

the size of working set but induces a number of page faults

at the beginning of the recovery. In our design, we adopt an

iterative and heuristic method. The post-checkpoint is divided

into fixed intervals (one second each). If the number of referred

pages is below ten in 60 successive iterations, the tracking is

stopped.

After tracking, the working set is compressed with gzip and

stored in the Image Storage with the VM snapshot. When

starting a VM from this snapshot, the compressed working

set is fetched and decompressed before starting the VM. It

should be noted that we compress the working set because

we load these pages as a whole before starting the VM and

sequential decompression is really fast. The remaining pages

in the VM snapshot are not compressed since they will be

fetched on demand, and compressed snapshot cannot support

random access efficiently. Also we do not compress the whole

memory which was adopted by the Collective project [13],

because for a VM snapshot as large as several gigabytes, the

compressed snapshot may still be very large and the process

of its decompression can be time-consuming.

B. Demand Prediction

Loading the smaller working set before VM startup is to

start the VM as fast as possible. However, when attempting

to refer a non-present page, the guest OS will cause a trap

(called demand-page-trap) into the hypervisor, waiting for

the hypervisor to fetch the demanded page. Handling of

such demand-page-traps will incur non-trivial overhead after

the VM startup. To alleviate such overhead, we introduce a

demand prediction approach which fetches the pages that are

most possibly needed in parallel with the VM execution.

Our approach follows the principle of memory access lo-

cality. Initially, we divide the whole memory address of the

newly started VM into segments, each of which contains N

consecutive pages. On each demand-page-trap, the hypervisor

fetches the page and records which segment it belongs to. For

one segment, if the number of demand-page-traps exceeds P

pages, we fetch the remaining pages in advance due to memory

access locality. Fig 4 is an example where N = 5, P = 3.

According to our policy, the remaining two pages of segment

B will be fetched in advance at background, so later accesses to

these pages will not result in demand-page-traps any more. In

practice, the segment with the largest number of pages already

fetched will be considered first.
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The parameters N and P control the behavior of demand

prediction. The value of P controls how close the loaded pages

are to the real working set of the guest OS, while the value

of N controls how our approach utilizes the memory access

locality of the guest OS. In our current implementation, N and

P are set as 1024 pages(4MB) and 30%. We find these values

work well in the experiment presented in this paper.

C. Free Page Avoidance

Usually, an operating system does not utilize all the memory

pages, and those free pages are initially zero content for the

consideration of security in a virtualized environment. For a

typical Internet service, the majority of memory consumption

results from dealing with client requests, while the memory

requirement of the service itself is small. Based on this obser-

vation, we propose free page avoidance to further promote the

performance of handling demand-page-traps when the guest

OS attempts to access free but non-present pages.

When preparing the VM snapshot, the pages with zero

content are identified and omitted in the snapshot. Later, during

the startup phase, Twinkle checks each demanded page. If

the operating system attempts to access a free page, Twinkle

allocates a page to the VM and clears its content, without

initiating slow I/O transmission.

D. File System Snapshot

In our design, each Internet service holds one prepared VM

snapshot in the Image Storage as shown in Fig 3. A VM

snapshot has two components, an execution snapshot and a

root file system image. To share the VM snapshot among all

the VM instances of a service, also save disk space (as well

as expenditure in the cloud), any modifications to the root

file system are saved on the local storage using copy-on-write

(COW) technology. The local state can be discarded when

the VM instances shut down later. Currently, we use QCOW,

one of the disk image formats supported by the QEMU device

model (qemu-dm) integrated in Xen [14]. We create a separate

COW image for each new VM. The COW image looks like

a standalone image to each VM but most of its data is kept

in the original image. When the VM accesses data that is not

present in the COW image, the data will be fetched from the

original image which the COW image is based on.

The overhead of COW image is less of an issue in our

system. First, the application data is stored separately. For

example, in the EC2 platform, the application data is stored

in S3. In our prototype, as shown in Fig 3, we deploy a

database cluster as the Internet service’s data tier. In addition,

disk activity is not so frequent in a modern operating system

because of its highly effective cache mechanisms. Should the

performance of COW image become an issue, we can adopt

a more efficient snapshot-enabled storage system, such as

Parallex [15].

E. Network Reconfiguration

Another issue is that the VMs starting from the same VM

snapshot will have the same network configuration (IP address,

MAC address, etc.) that is predetermined by the VM from

which we take the snapshot. In the cloud, different VMs should

have different network configurations. In our design, we take

the following steps to achieve a VM’s network reconfiguration.

First, before the VM starts, we connect its virtual network

interface card (NIC) to a private virtual bridge which prohibits

all its outbound network communication. Then, through a

virtual serial console, we pass a new network configuration

into the VM and apply the changes in the VM. After the new

network configuration takes effect, we re-connect the virtual

NIC back to the normal virtual bridge which enables the VM

to talk to the outside without any side-effect.

Unfortunately, network reconfiguration will cause problems

for the applications running in the VM. For Internet services,

there are two problems. First, it is sometimes impossible for

an already initialized Internet service to adapt to a new IP

address. To solve this problem, we make the service listen to

an internal address, and build a DMZ (Demilitarized Zone)

between this internal address and the VM’s outbound address

using iptables [16]. When the VM’s outbound IP address

changes, we only have to change the iptables’ rule to adapt to

the new address without reconfiguring the service itself. The

other problem is that the database connection pool may reserve

obsolete connections built before we take the snapshot. The

server will be unresponsive for quite a long time while keeping

on trying these connections. To cope with this problem, we

configure JBOSS-like middlewares with the C3P0 connection

pool, which detects connection failures via tentative SQL

query and can reconnect to the database server after cumulative

failures [17]. Besides, for the applications which implement a

database connection pool itself, we can still hack its source

code without much effort to implement the C3P0’s mechanism

to easily detect and recover from connection failures.

V. IMPLEMENTATION

We have implemented a Twinkle prototype based on

hardware-assisted virtual machine (HVM) technology of Xen

3.3.1 by modifying or adding 3,500 lines of source code.

In this section, we will describe our implementation details,

including VM snapshot preparation and fast startup.

A. VM Snapshot Preparation

To prepare a VM snapshot, we first create a VM, boot the

guest OS, and initialize and warm up the designated Internet

service. Then, we take a VM snapshot based on this fresh VM,

employing the suspend functionality of Xen. To support the

techniques described in the previous section, we have modified

Xen’s suspend implementation as follows.

First, the structure of the execution snapshot is changed.

To facilitate demand paging in Twinkle, the memory pages

are relocated at the end of the execution snapshot, starting

from an offset aligned on a page size boundary (e.g., 4K-byte).

To locate demanded pages efficiently, we add physical-to-disk

(p2d) table which maps the physical page frame number (pfn)

of a memory page to its position on the storage. In addition,

to assist free page avoidance, the hypervisor eliminates zero
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Fig. 5. The process of handling demand-page-traps.

pages in the VM snapshot, and mark it in the p2d table by

setting the corresponding entry as -1. Third, after taking the

VM snapshot, Xen continues to run the VM for an interval to

track its working set, which is compressed by gzip.

B. Fast Startup

For each VM, Dom0 (the management domain of Xen)

creates a VM container, which takes as long as 3s-4s in our

testbed. We observe that the time overhead comes mainly from

virtual device creation. We are investigating optimizations to

improve the series of operations. We can also reuse the VM

containers in each physical server among different VMs to

eliminate the time overhead, which will be our future work.

In our current implementation, in order to reduce this impact,

we create VM containers in advance.

When starting a VM, Dom0 first creates a COW image for

the VM, fetches and uncompress the working set, and marks

the remaining pages of the VM as non-present in the NPT.

Then, Dom0 starts the VM execution. During the execution,

when the guest OS attempts to access a non-present page, a

demand-page-trap takes place. In an HVM domain, demand-

page-traps are intercepted in three positions. First, when the

guest OS accesses a non-present page with the memory access

instructions, such as MOV and CMP, a demand-page-trap

will be caught in the NPT page fault handler. Second, in a

typical virtualization environment, the hypervisor traps sensi-

tive instructions and emulates their executions. Some of these

instructions, such as LGDT that loads a pseudo-descriptor

from memory into the GDTR register, will also result in

demand-page-traps if the referred pages are not present. These

traps are handled in the sensitive instruction emulation handler.

Third, the Xen hypervisor is not aware of any peripherals and

reuses the Dom0’s drivers to manage devices. The hypervisor

intercepts the guest OS’ I/O operations and delegates them

to Dom0. For an HVM guest, Dom0 leverages qemu-dm to

simulate I/O operations. When qemu-dm emulates a DMA

operation and accesses a non-present page, a demand-page-

trap will be intercepted in the I/O emulation routine.

Fig 5 shows the process of handling demand-page-traps.

Since Dom0 is the management domain of Xen and manages

hardware devices, most of our functional entities are located in

Dom0. The principal entity is the controller kernel mod-

ule which listens to demand-page-traps from Xen hypervisor

and qemu-dm and fetches pages from the VM snapshot. The

predict buffer stores the predicted pages that have not

been allocated to the VM.

When catching a demand-page-trap in Xen, Xen first allo-

cates a zero page to the VM and updates the corresponding

NPT entry. If the p2d entry is -1 (zero page), Xen hypervisor

resumes VM execution at the trapped instruction immediately.

Such a demand-page-trap is called free page fault. Otherwise,

Xen hypervisor sends a notification to the controller

through a designated event channel, requesting to fetch the

referred page. On receiving this event, the controller

first checks the predict buffer. If the page has been

predicted, a prediction hit fault happens. The controller copies

the page content into the newly allocated page. Otherwise, the

page will be fetched from the VM snapshot, which is a remote

fetch fault.

The handling process of the demand-page-traps from qemu-

dm is similar to that of traps caught by the hypervisor,

except that qemu-dm notifies the controller via a proc

file system since qemu-dm runs in user space of Dom0 while

controller is a kernel module. For brevity, we omit the

introduction of the handling process of demand-page-traps

caught by qemu-dm.

VI. EVALUATION

In this section, we evaluate the performance of our pro-

totype. Our experimental setup consists of seven Dell Pow-

erEdge blade servers with Intel 5620 CPU, 24 GB RAM and

10K RPM SAS disks: one for Nginx [18] dispatchers, two

elastic computing servers, one image storage server and three

for a MySql cluster. The architecture is shown in Fig 3, and all

the servers are connected via a Gigabit switch. The two elastic

computing servers are deployed with Twinkle to provide the

mechanism of fast resource provisioning. The shared image

storage is an iSCSI storage server holding the VM snapshots

for the elastic computing servers. The Nginx dispatchers and

the MySql cluster are all running in a sufficient number of

VMs on Xen 3.3.1, so that these components won’t become

bottlenecks for either experiment. All the VMs, including the

VMs that are started by Twinkle, are configured with 4096MB

of RAM and one CPU. Both physical servers and VMs run

Fedora 8 with kernel 2.6.18. To evaluate our system, we

perform the following four experiments:

1 We show that Twinkle can start a VM fast without

noticeable impact on the VM’s performance.

2 We use a single Internet service to clearly show that

our system can respond to a flash crowd more rapidly

compared to the existing approaches.

3 By starting two Internet services simultaneously, we

demonstrate that in a shared virtualized environment,

our system can still start multiple VMs efficiently.

4 We evaluate the effectiveness of our system in deal-

ing with system faults by simulating a failure over.

A. Workloads

We evaluate our system with a variety of benchmarks,

including a subset of Spec CPU2006, RUBiS [6] and TPC-
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W. Below, we will briefly describe these benchmarks:

1) Spec CPU2006: To evaluate the efficiency of our system,

we use Spec CPU2006. As a relatively deterministic bench-

mark suite, it is suitable for comparing the performance among

different techniques. Due to space constraints, we select six

programs (astar, libquantum, mcf, omnetpp, perlbench and

xalancbmk) from Spec CPU2006 based on [19].

2) RUBiS: RUBiS is used to simulate a bidding Internet

service similar to EBay. In our experiment, we run each

RUBiS instance in JBoss middleware configured with C3P0

connection pool to ease network reconfiguration. The data tier

is deployed in the MySql cluster with sufficient resources.

3) TPC-W: TPC-W is used to simulate an e-commerce

Internet service similar to Amazon book store. In our experi-

ment, each TPC-W instance runs in Tomcat. Like RUBiS, the

data tier is deployed in the MySql cluster. The implementation

of its simple database connection pool is hacked to import the

self-recovery mechanism of C3P0.

B. Performance Evaluation

There are two metrics related to our system, startup latency

and performance overhead. Startup latency is defined as the

time between the point when the VM starts to recover from

a VM snapshot and the point when the guest OS begins

to run. The startup latency of Twinkle is the time to fetch

and decompress the working set. Performance overhead is

evaluated by VM invalid execution ratio that is the percentage

of CPU time when the VM is inactive. The higher the ratio

is, the more performance degradation the VM will suffer.

To show our system’s effectiveness, we perform our ex-

periment with the subset of Spec CPU2006. We run the six

programs in separate VMs for two minutes, and then take a

snapshot of each VM. After that, we continue the execution of

the VM from the snapshot with three approaches: Xen’s native

resume, demand paging without optimization, and our Twinkle

startup. In the following, we will present the startup latency

and the performance overhead of our system, and finally we

will show how each technique contribute to the results.

To evaluate the startup latency, we compare Twinkle with

Xen’s native resume (Baseline). For Xen’s native resume, it

takes about 82.4 seconds to resume a VM with 4096MB of

RAM. In contrast, the startup latency of Twinkle is propor-

tional to the size of the VM’s working set. Table 1 presents

the startup latency of each VM running different programs.

The results indicate that Twinkle can start the VMs in less

than 3.5 seconds except mcf which owns a large working set.

To evaluate its performance overhead, we record VM invalid

execution ratio under three configurations throughout the exe-

cution of the six programs. Fig 6 shows our results (Y axis is in

log scale). We present demand paging (worst case) and normal

VM execution (best case, also the baseline) for comparison. As

is shown in Fig 6, demand paging imposes heavy performance

impact, especially at the beginning. In contrast, the invalid

execution ratio under Twinkle is close to the best case in all

the programs. It should be noted that the invalid execution

ratio of a normal VM is not zero due to the overhead coming
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Fig. 7. The count of remote page faults under different combinations of
techniques.

from virtualization itself, which is trivial in our testbed. Table

2 presents the time to complete the execution of each program,

as well as the slowdown relative to the baseline. We can see

that the performance overhead of Twinkle is trivial for all the

programs.

There are three types of page faults in our system: free page

fault, prediction hit fault and remote fetch fault. The handling

time of each is 0.6us, 14.3us and 398.6us, respectively. Obvi-

ously, the number of remote fetch fault tightly determines the

performance of the newly started VM. We use the number

of remote page fault to evaluate the contribution of each

technique. We start the VM snapshot with the following com-

binations of techniques: none(“n”), free page avoidance(“f”),

free page avoidance + demand prediction(“fd”) and free page

avoidance + demand prediction + working set estimation

(“fdw”). From Fig 7, we can see that the three programs,

libquantum, perbench and xalancbmk, benefit much from free

page avoidance. With demand prediction enabled, the count of

remote page fault is reduced by almost half in all programs

because those pages are loaded in advance before they are

actually accessed. With working set estimation integrated, the

remote page faults decreases further.

C. Application Evaluation

In this section, we evaluate Twinkle in providing additional

VMs for Internet services that employ the auto scaling of cloud

computing. Our testbed is constructed as Fig 3. In this paper,

we focus on the fast resource provisioning mechanism. To

evaluate this mechanism, in the dispatcher, we implement a

heuristic policy of Scalr [20], which determines when to scale

up services based on predefined policies. In our experiments,

we adopt the policy of provisioning more VMs for the

service when detecting degradation of service quality based

on response time (exceeding 2000 msec in our cases). The

dispatcher dynamically dispatches requests among all VMs

employed by the service in a weighted round robin manner

according to the response time from each VM.

In these experiments, we follow the way of Bodı́k et al [21]

to generate workload spikes. We employ three approaches to

increasing additional service instances: starting a VM from

scratch (“Xen VM Start”), resuming a VM snapshot with
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TABLE I
STARTUP LATENCY (SECONDS) AND RATIO TO BASELINE (PERCENTAGE).

astar libquantum mcf omnetpp perlbench xalancbmk

Startup Latency 1.49 (1.8%) 0.35 (0.4%) 11.89 (14.4%) 1.31 (1.6%) 2.25 (2.7%) 3.24 (3.9%)
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Fig. 6. VM Invalid Execution Ratio.

TABLE II
EXECUTION TIME.

astar libquantum mcf omnetpp perlbench xalancbmk

Baseline 600.95 830.57 455.84 383.99 411.30 283.27
Demand Paging 639.56(6.4%) 863.28(3.9%) 818.93(79.7%) 459.74(19.7%) 575.04(39.8%) 425.34(50.2%)

Twinkle 608.31(1.2%) 841.57(1.3%) 470.15(3.1%) 399.75.04(4.1%) 460.40(11.2%) 325.71(11.5%)

Xen’s native resume (“Xen VM Resume”) and starting from

a VM snapshot with Twinkle (“Twinkle Fast Start”). With

Twinkle, both RUBiS and TPC-W services begin processing

client requests in less than 3 seconds after Scalr decides to

provide additional service instances.

1) Single Internet Service: In this experiment, we use a

single application, RUBiS, to show that Twinkle can maintain

the application-level performance by quickly providing addi-

tional VMs when a flash crowd occurs. Initially, the number

of RUBiS clients is 50, and one VM with 4096MB RAM and

one CPU is sufficient to handle the requests. As shown in Fig

8, the response time (averaged in one second interval) in this

period is low. After 40 seconds, we increase the number of

clients from 50 to 450 in 400 seconds to simulate a workload

spike. At roughly 300 seconds, our Scalr detects this flash

crowd and starts an additional VM.

Fig 8(a) shows the results by starting a VM instance from

scratch. The response time increases to over 3000 msec in

some period, and it takes about 250 seconds before the scale-

up decision takes effect. Fig 8(b) shows the performance by

resuming a VM from a VM snapshot. Since the time to resume

a VM is proportional to the size of RAM, it takes nearly 300

seconds before the response time decreases below 2000 mesc.

It should be noted that this time span is longer than the latency
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Fig. 8. Response Time of RUBiS service during a flash crowd.
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Fig. 9. Response Time of RUBiS and TPC-W services during a flash crowd.

of VM startup/resume time since it takes more time for a

service to recover to normal if the service has been heavily

overloaded. In Fig(c), we show the service quality achieved

by Twinkle. With Twinkle, service capacity can be increased

as soon as the Scalr detects a service degradation. As shown

in Fig 8(c), the QoS in this test returns to normal quickly,

keeping the response time below 2000 msec most of the time

during the period of the flash crowd.

2) Multiple Internet Services: In the cloud, there are multi-

ple services running in a single server. When multiple services

are started simultaneously at a single server, they will race for

resource. To illustrate our system in such an environment, we

show the robustness of Twinkle when both RUBiS and TPC-W

experience workload spikes simultaneously.

In the first part of this experiment, both RUBiS and TPC-

W have 50 clients to generate workload. At the time of 50

seconds, we increase the number of TPC-W clients to 350 in

300 seconds, and at the time of 100 seconds, we increase the

number of RUBiS clients to 300 in 200 seconds. Both services

will experience QoS degradation during the period, and will

demand more capacity. Driven by the client requests, Scalr
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Fig. 10. Throughput of RUBiS services during a failure over.

decides to increase VM instances for each service at almost

the same time (within a difference of five seconds). In order

to simulate the scenario where multiple services are started in

a single server simultaneously, we start the two VMs at the

same elastic computing server.

Fig 9 shows the results. Since TPC-W is a simple bench-

mark and runs in Tomcat that is lightweight, its startup latency

is fast when starting from scratch (Fig 9(a)). When starting

the two VMs simultaneously, there is little impact on both

services, since our server has sufficient CPU and memory.

However, in Fig 9(b), the TPC-W experiences more QoS

degradation due to the long latency of fetching memory pages

via network caused by Xen’s native resume. In our testbed, we

find if resuming the two VMs simultaneously, the resuming

time of each VM increases to about 174 seconds due to the

I/O bottleneck, while resuming a single VM takes about 83

seconds. In contrast, Twinkle consumes I/O resource not so

greedily. From Fig 9(c), we can see that by fetching pages on

demand, Twinkle still works well by starting new VMs in less

than 3 seconds when provisioning resources among multiple

services at the same server.

3) High Available Internet Service: In the cloud, when

a VM crashes, we can quickly reprovision another VM from

the infinite resource pool. In this experiment, we show that

Twinkle handles service failures effectively as well.

Fig 10 demonstrates the degree of high availability achieved

with different approaches to reprovisioning a VM. In this

experiment, the number of RUBiS clients is fixed as 350. The

average throughput is 50 requests per second since each client

generates requests with a think time of 7 seconds. To sustain

high availability and application level performance, there are

two VMs serving these requests. At the time point of zero, we

crashes one of the VMs to simulate a failure. Our dispatcher

detects this failure and redirects all the requests to the other

VM. Meanwhile, Scalr adds another VM replica as a recovery.

In this experiment, the latency of resource reprovisioning

determines the degree of high availability. Fig 10(c) shows that

with our fast resource provisioning mechanism, the RUBiS
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server survives the failure much better. In contrast, when

starting the VM from scratch (fig 10(a)) or resuming the

VM from a VM snapshot (fig 10(b)), the RUBiS service

experiences a severe throughput degradation.

VII. RELATED WORK

Auto scaling, one of the most important feature of cloud

computing, has attracted much interest from both academe

and industry [2][3]. The commercial products, such as

RightScale [22], Scalr [20] and EC2 itself [3], provide the

ability of provisioning virtual machines on-the-fly to handle

request spikes and decommissioning them when no longer

needed. These products mainly focus on the policy decisions

of when and where to start/stop virtual machines. For example,

RightScale employs a simple democratic voting process to

decide when scaling up/down should be taken. In this paper,

we provide a fast resource provisioning mechanism which

executes these decisions more efficiently once they are made.

Many projects have taken advantage of virtual machine

replication to enable interesting applications. The Collective

project [13] was designed to move the state of running virtual

machines via a network. Collective aims at a low-bandwidth

network and it begins execution after all the memory has

been loaded, while Twinkle works in data centers with high

bandwidth and fetches only the working set before starting

the virtual machine. The Potemkin project [23], a honeypot

system, simulating multiple virtual machines in a single server.

It spawns short-lived virtual machines with memory copy-

on-write techniques, and does not fetch memory pages via a

network environment. Recently, the project of SnowFlock [24]

enables cloning virtual machines on-the-fly for computation

intensive applications. It employs multicast and an intrusive

avoidance heuristics to reduce the pages transferred. Twinkle

aims to improve the latency of virtual machine provisioning

for the Internet services which employ the feature of auto

scaling in the cloud. It works transparently without intruding

the upper applications which are provided by cloud customers.

Besides reducing startup latency, Twinkle also achieves low

performance overhead at the beginning of startup, where the

previous projects did not take much consideration.

VIII. CONCLUSION

We present Twinkle, a fast resource provisioning mechanism

for the Internet services which facilitate the feature of auto

scaling in the cloud. By starting a virtual machine from

partial snapshot and other techniques, we reduce the time

to provision a virtual machine to a few seconds without

noticeable performance overhead. With Twinkle, the Internet

services can keep closer to capacity requirement and can

maintain application level performance in the cases of flash

crowds and failures.
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